

Report on Analysis of existing courses and resources

D1.1

Project Title	Erasmus+ Master of Engineering in Internet of Things		
Project Acronym	IoTrain	Project Number	619390-ЕРР-1-2020-1-DE-ЕРРКА2- СВНЕ-ЈР
Date	2020-03-25	Deliverable No.	1.1
Contact Person	Farideh Saadati and Mahdi Bohlouli	Organisation	IBS Team With equal contribution from all other partners Leader: SCU
Phone	+98 24 3414848 +49 176 62499911	E-Mail	saadati@iasbs.ac.ir mb@petanux.com
Version	5.1	Confidentiality level	Public

Version History

Version No.	Date	Change	Editor(s)
1.0	31/01/2021	Farideh Saadati, IBS Team	Initial draft document
2.0	04/02/2021	Mahdi Bohlouli, IBS	Feedback given for the next version and potential updates
2.1	17.02.2021	Farideh Saadati, IBS	New version considering provided feedback in the version 2.0 is appplied. Further course degrees added.
2.2	22/02/2021	Farideh Saadati, IBS	The previous version was updated and the list of courses that were not in the existing courses of the target partners and countries was added.
2.3	25/2/2021	Farideh Saadati, IBS	in this version, formatting document was Edited.
3.0	26/02/2021	Mahdi Bohlouli, IBS	Feedback given to the latest version and changes applied.
3.1	26/02/2021	Farideh Saadati, IBS	All changes were applied in version of 3.0.
4.0	28/02/2021	Mahdi Bohlouli, IBS	Final changes have been checked and further modifications have been applied.
4.1	14/03/2021	Farideh Saadati, IBS	USB comments were applied.
5.0	24/03/2021	Farideh Saadati, IBS	Table of offered courses index of involved partners in project inserted.
5.1	28/03/2021	Farideh Saadati, IBS	Final version for delivery to EC, integrated

Contributors

Name	Organization

Disclaimer

This project has been funded with support from the European Commission. This publication reflects the views only of the author, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

Table of Contents

V	Version History			
С	Contributors			
D	Disclaimer			
Та	Table of Contents			
Та	able o	f Tables6		
Та	able o	f Figures11		
1	Int	troduction		
	1.1	Abstract		
	1.2 discu	The scope of the document, i.e., what is discussed in this document and what is not issed		
	1.3	Purpose of the document		
	1.4	Relation to other deliverables13		
	1.5	Relation to workpackages Brror! Bookmark not defined.		
	1.6	Terminology (if needed) Error! Bookmark not defined.		
	1.7	Motivation (if needed) defined.		
2	DE	SIGNED QUIESTIONNAIRE FOR PARTNER INPUT PROCESS		
3	AN	ALYSIS OF EXISTING IOT DEGREES IN PARTNER, PROGRAM AND OTHER DEGREES		
4	AN	ALYSIS OF EXISTING COURSES IN PARTNER COUNTRIES		
	4.1	INFORMATION RETRIEVAL		
	4.2	FOUNDATIONS OF NATURAL LANGUAGE PROCESSING		
	4.3	REAL-TIME EMBEDDED SYSTEMS		
	4.4	DATA MINING		
	4.5	FOUNDATIONS OF EMBEDDED IOT SYSTEMS		
	4.6	IOT NETWORKS		
	4.7	CRYPTOGRAPHY		
	4.8	MACHINE LEARNING FOR WIRELESS COMMUNICATIONS		
	4.9	EMBEDDED PROCESSORS		
	4.10	DEEP LEARNING		
	4.11	BIG DATA		
	4.12	CLOUD AND FOG COMPUTING 41		
	4.13	SMART AGENTS AND SYSTEM ANALYSIS DESIGN		
	4.14	SEMANTIC WEB 43		
	4.15	IOT PROGRAMMING (WITH RASPBERRY PI, BLUETOOTH, MOBILE DEVICES, AND SWIFT) 44		
	4.16	IOT SECURITY		

	4.17	CELLULAR AND WIRELESS COMMUNICATIONS	47		
	4.18	INTRODUCTION TO DIGITAL SIGNAL PROCESSING	47		
	4.19	FUNDAMENTALS OF WIRELESS NETWORKS	49		
	4.20	REAL-TIME AND EMBEDDED SYSTEMS	51		
	4.21	DATA COMMUNICATIONS	53		
	4.22	ADVANCED COMPUTER NETWORKS	55		
	4.23	NETWORK SECURITY	58		
	4.24	FAULT TOLERANT SYSTEMS	60		
	4.25	DISTRIBUTED SYSTEMS	64		
	4.26	ADVANCED ARTIFICIAL INTELLIGENCE	66		
	4.27	ADVANCED COMPUTER NETWORKS	68		
	4.28	COMPUTER NETWORKS	69		
	4.29	NETWORKS AND COMMUNICATIONS	69		
5	AN	IALYSIS OF EXISTING COURSES IN PROGRAM COUNTRIES	. 72		
	5.1	EMBEDDED CONTROL (EC)	. 72		
	5.2	ELECTRICAL AND ELECTRONIC ENGINEERING I (EEEI)	73		
	5.3	AUTOMATION AND INDUSTRIAL COMMUNICATION (AIC)	. 75		
	5.4	FUNDAMENTALS FOR MECHATRONIC APPLICATIONS (FMA)	76		
	5.5	INTRODUCTION TO PROGRAMMING (IP)	. 78		
	5.6	SENSORICS (SEN)	. 79		
	5.7	ACTORICS (ACT)	80		
	5.8	SOFTWARE ENGINEERING (SWE)	81		
	5.9	MECHATRONIC SYSTEMS (MESY)	82		
	5.10	DEVELOPMENT OF THE EMBEDDED SYSTEMS WITH FPGAS	83		
	5.11	DEEP LEARNING	84		
	5.12	DISTRIBUTED SYSTEMS	86		
	5.13	EMBEDDED SYSTEMS	87		
	5.14	RECENT ADVANCES IN MACHINE LEARNING	89		
	5.15	THE INTERNET OF THINGS: ARCHITECTURES AND APPLICATIONS	89		
	5.16	MACHINE LEARNING	93		
	5.17	INFORMATION PROCESSING (ELEMENTS OF STATISTICAL DATA ANALYSIS FOR ENGINEE 96	RS)		
	5.18	INTELLIGENT MEASUREMENT SYSTEMS (WIRELESS SENSOR NETWORKS)	98		
6	PR	OPOSED COURSE LIST ACCORDING TO THE GAP IDENTIFICATION	102		
7	RE	RECCOMENDATIONS FOR ANALYSIS OF IDENTFILED GAPS			

Table of Tables

Table 1. Designed Template for collecting the list of relevant IoT Degrees/Programs
Table 2. Designed Template for collecting the list existing courses and resourcesat partners universitythat can be related to the Master of IoT14
Table 3. Designed Template for collecting weekly plan 15
Table 4. Designed Template for collecting weekly plan for teaching assistant
Table 5. Designed Template for collecting suggested topics 16
Table 6. Designed Template for collecting the list the Book or Reference 16
Table 7. Designed Template for collecting link of similar course 16
Table 8. Designed Template for collecting suggested topic that are not in existing course 17
Table 9. International IoT programs in EU countries 18
Table 10. International IoT programs in other countries 20
Table 11. Weekly plan and details of all topics and subjects of information retrieval course at (IBS). 22
Table 12. Suggested content for the teaching assistant part of information retrieval course at (IBS) 23
Table 13. Recommended Textbook of information retrieval course at (IBS) 24
Table 14. Recommended relevant courses to information retrieval course at (IBS) 24
Table 15. Weekly plan and details of all topics and subjects of foundations of natural languageprocessing course at (IBS)25
Table 16. Suggested content for the teaching assistant part of foundations of natural language processing course at (IBS) 26
Table 17. Recommended Textbook of foundations of natural language processing course at (IBS) 26
Table 18. Recommended relevant to foundations of natural language processing course at (IBS) 26
Table 19. Weekly plan and details of all topics and subjects of real-time embedded systems course at(IBS)27
Table 20. Suggested content for the teaching assistant part of real-time embedded systems course at(IBS)29
Table 21. Recommended Textbook of real-time embedded systems course at (IBS)
Table 22. Weekly plan and details of all topics and subjects of data mining course at (IBS)
Table 23. Recommended Textbook of data mining course at (IBS)
Table 24. Recommended relevant courses to data mining course at (IBS)
Table 25. Suggested topics for foundations of embedded IoT systems course at (IAU)
Table 26. Recommended Textbook of foundations of embedded IoT systems course at (IAU)
Table 27 Suggested topics for IoT Networks course at (IAU) 34
Table 28 Recommended Textbook of IoT Networks course at (IALL) 35

D1.1

Table 30. Recommended Textbook of cryptography course at (IAU) 36 Table 31. Suggested topics for machine learning for wireless communications course at (IAU) 37
Table 21. Suggested tonics for machine learning for wireless communications course at (IALI) 27
Table 51. Suggested topics for machine learning for wheless communications course at (IAO)
Table 32. Recommended Textbook of wireless communications course at (IAU)
Table 33. Recommended Textbook of embedded processors course at (IAU) 38
Table 34. Suggested topics for deep learning course at (IAU) 38
Table 35. Recommended Textbook of deep learning course at (IAU) 39
Table 36. Suggested topics for big data course at (IAU) 40
Table 37. Recommended Textbook of big data course at (IAU)
Table 38. Suggested topics of cloud and fog computing course at (IAU)
Table 39. Recommended Textbook for cloud and fog computing course at (IAU) 42
Table 40. Suggested topics of smart agents and system analysis design course at (IAU)
Table 41. Recommended Textbook for smart agents and system analysis design course at (IAU) 43
Table 42. Suggested topics of semantic web course at (IAU)
Table 43. Recommended Textbook for semantic web course at (IAU) 44
Table 44. Suggested topics of IoT programming (with raspberry pi, bluetooth, mobile devices, andswift) course at (IAU)45
Table 45. Recommended Textbook for IoT programming (with raspberry pi, bluetooth, mobiledevices, and swift) course at (IAU)45
Table 46. Suggested topics of IoT Security course at (IAU)
Table 47, Recommended Toythook for Lot Cocyrity course at (1411)
Tuble 47. Recommended Textbook for for Security Course at (IAO)
Table 48. Recommended Textbook for cellular and wireless communications course at (IAU)
Table 47. Recommended Textbook for cellular and wireless communications course at (IAU)47Table 48. Recommended Textbook for cellular and wireless communications course at (IAU)47Table 49. Suggested topics of introduction to digital signal processing course at (IAU)48
Table 47. Recommended Textbook for rellular and wireless communications course at (IAU)47Table 48. Recommended Textbook for cellular and wireless communications course at (IAU)47Table 49. Suggested topics of introduction to digital signal processing course at (IAU)48Table 50. Recommended Textbook for introduction to digital signal processing course at (IAU)49
Table 47. Recommended Textbook for rellular and wireless communications course at (IAU)47Table 48. Recommended Textbook for cellular and wireless communications course at (IAU)47Table 49. Suggested topics of introduction to digital signal processing course at (IAU)48Table 50. Recommended Textbook for introduction to digital signal processing course at (IAU)49Table 51. Weekly plan and details of all topics and subjects of fundamentals of wireless networks course at (SCU)49
Table 47. Recommended Textbook for rellular and wireless communications course at (IAU)47Table 48. Recommended Textbook for cellular and wireless communications course at (IAU)47Table 49. Suggested topics of introduction to digital signal processing course at (IAU)48Table 50. Recommended Textbook for introduction to digital signal processing course at (IAU)49Table 51. Weekly plan and details of all topics and subjects of fundamentals of wireless networks49Table 52. Recommended Textbook of all topics and subjects of fundamentals of wireless networks51Course at (SCU)51
Table 47. Recommended Textbook for for security course at (IAO)47Table 48. Recommended Textbook for cellular and wireless communications course at (IAU)47Table 49. Suggested topics of introduction to digital signal processing course at (IAU)48Table 50. Recommended Textbook for introduction to digital signal processing course at (IAU)49Table 51. Weekly plan and details of all topics and subjects of fundamentals of wireless networks49Table 52. Recommended Textbook of all topics and subjects of fundamentals of wireless networks51Table 53. Recommended relevant courses to all topics and subjects of fundamentals of wireless51Table 53. Recommended relevant courses to all topics and subjects of fundamentals of sireless51Table 53. Recommended relevant courses to all topics and subjects of fundamentals of sireless51
Table 47. Recommended Textbook for for Security course at (IAO)47Table 48. Recommended Textbook for cellular and wireless communications course at (IAU)47Table 49. Suggested topics of introduction to digital signal processing course at (IAU)48Table 50. Recommended Textbook for introduction to digital signal processing course at (IAU)49Table 51. Weekly plan and details of all topics and subjects of fundamentals of wireless networks49Table 52. Recommended Textbook of all topics and subjects of fundamentals of wireless networks51Table 53. Recommended Textbook of all topics and subjects of fundamentals of wireless networks51Table 53. Recommended relevant courses to all topics and subjects of fundamentals of wireless51Table 54. Weekly plan and details of all topics and subjects of real-time and embedded systems51COURSE AT (SCU)52
Table 47. Recommended Textbook for for security course at (IAO)47Table 48. Recommended Textbook for cellular and wireless communications course at (IAU)47Table 49. Suggested topics of introduction to digital signal processing course at (IAU)48Table 50. Recommended Textbook for introduction to digital signal processing course at (IAU)49Table 51. Weekly plan and details of all topics and subjects of fundamentals of wireless networks49Table 52. Recommended Textbook of all topics and subjects of fundamentals of wireless networks49Table 53. Recommended Textbook of all topics and subjects of fundamentals of wireless networks51Table 53. Recommended relevant courses to all topics and subjects of fundamentals of wireless51Table 54. Weekly plan and details of all topics and subjects of real-time and embedded systems51Table 55. Recommended Textbook of real-time and embedded systems course at (SCU)52Table 55. Recommended Textbook of real-time and embedded systems52
Table 47. Recommended Textbook for rellular and wireless communications course at (IAU)47Table 48. Recommended Textbook for cellular and wireless communications course at (IAU)47Table 50. Recommended Textbook for introduction to digital signal processing course at (IAU)48Table 51. Weekly plan and details of all topics and subjects of fundamentals of wireless networks49Table 52. Recommended Textbook of all topics and subjects of fundamentals of wireless networks49Table 52. Recommended Textbook of all topics and subjects of fundamentals of wireless networks51Table 53. Recommended relevant courses to all topics and subjects of fundamentals of wireless51Table 54. Weekly plan and details of all topics and subjects of real-time and embedded systems51Table 54. Weekly plan and details of all topics and subjects of real-time and embedded systems52Table 55. Recommended Textbook of real-time and embedded systems course at (SCU)53Table 56. Recommended Textbook of real-time and embedded systems course at (SCU)53
Table 47. Recommended Textbook for cellular and wireless communications course at (IAU) 47 Table 48. Recommended Textbook for cellular and wireless communications course at (IAU) 47 Table 49. Suggested topics of introduction to digital signal processing course at (IAU) 48 Table 50. Recommended Textbook for introduction to digital signal processing course at (IAU) 49 Table 51. Weekly plan and details of all topics and subjects of fundamentals of wireless networks course at (SCU) 49 Table 52. Recommended Textbook of all topics and subjects of fundamentals of wireless networks course at (SCU) 51 Table 53. Recommended relevant courses to all topics and subjects of fundamentals of wireless networks course at (SCU) 51 Table 54. Weekly plan and details of all topics and subjects of real-time and embedded systems COURSE AT (SCU) 52 Table 55. Recommended Textbook of real-time and embedded systems course at (SCU) 53 Table 56. Recommended relevant courses to real-time and embedded systems course at (SCU) 53 Table 56. Recommended relevant courses to real-time and embedded systems course at (SCU) 53 Table 57. Weekly plan and details of all topics and subjects of data communications course at (SCU) 53 Table 56. Recommended relevant courses to real-time and embedded systems course at (SCU) 53 Table 57. Weekly plan and details of all topics and subjects of data communicat
Table 47. Recommended Textbook for for Security Course at (IAO)

Table 59. Recommended relevant courses to all topics and subjects of data communications course at (SCU)
Table 60. Weekly plan and details of all topics and subjects of advanced computer networks Courseat (SCU)
Table 61. Recommended relevant courses to all topics and subjects of advanced computer networksCourse at (SCU)58
Table 62. Weekly plan and details of all topics and subjects of network security course at (SCU) 58
Table 63. Recommended Textbook of network security course at (SCU)
Table 64. Recommended relevant courses to network security course at (SCU) 60
Table 65. Weekly plan and details of all topics and subjects of fault tolerant systems course at (SCU) 61
Table 66. Recommended Textbook of fault tolerant systems course at (SCU)
Table 67. Recommended relevant courses to fault tolerant systems course at (SCU)
Table 68. Weekly plan and details of all topics and subjects of distributed systems course at (SCU) . 64
Table 69. Recommended Textbook of distributed systems course at (SCU)
Table 70. Recommended relevant courses to distributed systems course at (SCU)
Table 71. Weekly plan and details of all topics and subjects of advanced artificial intelligence course at (USB)
Table 72. Recommended Textbook of advanced artificial intelligence course at (USB)
Table 73. Weekly plan and details of all topics and subjects of advanced computer networks course at (USB)
Table 74. Recommended Textbook of advanced computer networks course at (USB)
Table 75. Weekly plan and details of all topics and subjects of networks and communications course at (UWA)
Table 76. Recommended Textbook of networks and communications course at (UWA)
Table 77. Recommended relevant courses to networks and communications course at (UWA) 71
Table 78. Weekly plan and details of all topics and subjects of embedded control (EC) course at (USI) 72
Table 79. Recommended Textbook of embedded control (EC) course at (USI)
Table 80. Weekly plan and details of all topics and subjects of electrical and electronic engineering I(EEEI) course at (USI)
Table 81. Recommended Textbook of electrical and electronic engineering I (EEEI) course at (USI). 75
Table 82. Weekly plan and details of all topics and subjects of automation and industrialcommunication (AIC) course at (USI)76
Table 83. Recommended Textbook of automation and industrial communication (AIC) course at (USI)
Table 84. Weekly plan and details of all topics and subjects of fundamentals for mechatronic applications (FMA) course at (USI) 77
Table 85. Recommended Textbook of fundamentals for mechatronic applications (FMA) course at (USI)

Table 86. Weekly plan and details of all topics and subjects of introduction to programming (IP)course at (USI)Table 87. Recommended Textbook of introduction to programming (IP) course at (USI)79
Table 87. Recommended Textbook of introduction to programming (IP) course at (USI) 79
Table 88. Weekly plan and details of all topics and subjects of sensorics (SEN) course at (USI)
Table 89. Recommended Textbook of sensorics (SEN) course at (USI) 80
Table 90. Weekly plan and details of all topics and subjects of actorics (ACT) course at (USI)
Table 91. Recommended Textbook of actorics (ACT) course at (USI) 81
Table 92. Weekly plan and details of all topics and subjects of software engineering (SWE) course at(USI)
Table 93. Recommended Textbook of software engineering (SWE) course at (USI)
Table 94. Weekly plan and details of all topics and subjects of mechatronic systems (MESY) course at(USI)
Table 95. Recommended Textbook of mechatronic systems (MESY) course at (USI) 83
Table 96. Weekly plan and details of all topics and subjects of development of the embeddedsystems with FPGAS course at (USI)
Table 97. Recommended Textbook of development of the embedded systems with FPGAS course at (USI)
Table 98. Weekly plan and details of all topics and subjects of deep learning course at (USI)
Table 99. Recommended Textbook of deep learning course at (USI) 86
Table 100. Weekly plan and details of all topics and subjects of distributed systems course at (USI). 86
Table 101. Recommended Textbook of distributed systems course at (USI) 87
Table 102. Weekly plan and details of all topics and subjects of embedded systems course at (USI). 88
Table 102. Weekly plan and details of all topics and subjects of embedded systems course at (USI). 88Table 103. Recommended Textbook of embedded systems course at (USI)
Table 102. Weekly plan and details of all topics and subjects of embedded systems course at (USI).Table 103. Recommended Textbook of embedded systems course at (USI).88Table 104. Weekly plan and details of all topics and subjects of recent advances in machine learning course at (USI).89
Table 102. Weekly plan and details of all topics and subjects of embedded systems course at (USI).Table 103. Recommended Textbook of embedded systems course at (USI).88Table 104. Weekly plan and details of all topics and subjects of recent advances in machine learning course at (USI)89Table 105. Recommended Textbook of recent advances in machine learning course at (USI)
Table 102. Weekly plan and details of all topics and subjects of embedded systems course at (USI).Table 103. Recommended Textbook of embedded systems course at (USI).88Table 104. Weekly plan and details of all topics and subjects of recent advances in machine learning course at (USI).89Table 105. Recommended Textbook of recent advances in machine learning course at (USI).89Table 106. Weekly plan and details of all topics and subjects of the internet of things: architectures and applications course at (UMA)
Table 102. Weekly plan and details of all topics and subjects of embedded systems course at (USI).Table 103. Recommended Textbook of embedded systems course at (USI).Recommended Textbook of all topics and subjects of recent advances in machine learning course at (USI)Recommended Textbook of recent advances in machine learning course at (USI)Recommended Textbook of recent advances in machine learning course at (USI)Recommended Textbook of recent advances in machine learning course at (USI)Recommended Textbook of recent advances in machine learning course at (USI)Recommended Textbook of recent advances in machine learning course at (USI)Recommended Textbook of recent advances in machine learning course at (USI)Recommended Textbook of recent advances in machine learning course at (USI)Recommended Textbook of recent advances in machine learning course at (USI)Recommended Textbook of recent advances in machine learning course at (USI)Recommended Textbook of recent advances in machine learning course at (USI)Recommended Textbook of recent advances in machine learning course at (USI)Recommended Textbook of recent advances in machine learning course at (USI)Recommended Textbook of recent advances in machine learning course at (USI)Recommended Textbook of recent advances in machine learning course at (USI)Recommended Textbook of recent advances in machine learning course at (UMA)Recommended Textbook of recent advances in machine learning course at (UMA)Recommended Textbook of recent advances in machine learning course at (UMA)Recommended Textbook of recent advances in machine learning course at (UMA)Recommended Textbook of recent
Table 102. Weekly plan and details of all topics and subjects of embedded systems course at (USI).88Table 103. Recommended Textbook of embedded systems course at (USI)88Table 104. Weekly plan and details of all topics and subjects of recent advances in machine learning course at (USI)89Table 105. Recommended Textbook of recent advances in machine learning course at (USI)89Table 106. Weekly plan and details of all topics and subjects of the internet of things: architectures and applications course at (UMA)90Table 107. Suggested content for the teaching assistant part of the internet of things: architectures and applications course at (UMA)91Table 108. Recommended Textbook of all topics and subjects of the internet of things: architectures and applications course at (UMA)91Table 108. Recommended Textbook of all topics and subjects of the internet of things: architectures and applications course at (UMA)91Table 108. Recommended Textbook of all topics and subjects of the internet of things: architectures and applications course at (UMA)91
Table 102. Weekly plan and details of all topics and subjects of embedded systems course at (USI). 88Table 103. Recommended Textbook of embedded systems course at (USI)88Table 104. Weekly plan and details of all topics and subjects of recent advances in machine learning course at (USI)89Table 105. Recommended Textbook of recent advances in machine learning course at (USI)89Table 106. Weekly plan and details of all topics and subjects of the internet of things: architectures and applications course at (UMA)90Table 107. Suggested content for the teaching assistant part of the internet of things: architectures and applications course at (UMA)91Table 108. Recommended Textbook of all topics and subjects of the internet of things: architectures and applications course at (UMA)91Table 108. Recommended Textbook of all topics and subjects of the internet of things: architectures and applications course at (UMA)92Table 109. Recommended Textbook of all topics and subjects of the internet of things: architectures and applications course at (UMA)92Table 109. Recommended relevant courses to all topics and subjects of the internet of things: architectures and applications course at (UMA)92
Table 102. Weekly plan and details of all topics and subjects of embedded systems course at (USI).Table 103. Recommended Textbook of embedded systems course at (USI).88Table 104. Weekly plan and details of all topics and subjects of recent advances in machine learning course at (USI)89Table 105. Recommended Textbook of recent advances in machine learning course at (USI)89Table 106. Weekly plan and details of all topics and subjects of the internet of things: architectures and applications course at (UMA)90Table 107. Suggested content for the teaching assistant part of the internet of things: architectures and applications course at (UMA)91Table 108. Recommended Textbook of all topics and subjects of the internet of things: architectures and applications course at (UMA)92Table 109. Recommended relevant courses to all topics and subjects of the internet of things: architectures and applications course at (UMA)92Table 109. Recommended relevant courses to all topics and subjects of the internet of things: architectures and applications course at (UMA)92Table 109. Recommended relevant courses to all topics and subjects of the internet of things: architectures and applications course at (UMA)92Table 110. Weekly plan and details of all topics and subjects of machine learning course at (UMA).92Table 110. Weekly plan and details of all topics and subjects of machine learning course at (UMA).93
Table 102. Weekly plan and details of all topics and subjects of embedded systems course at (USI).Table 103. Recommended Textbook of embedded systems course at (USI)Table 104. Weekly plan and details of all topics and subjects of recent advances in machine learning course at (USI)Table 105. Recommended Textbook of recent advances in machine learning course at (USI)Table 105. Recommended Textbook of recent advances in machine learning course at (USI)Table 106. Weekly plan and details of all topics and subjects of the internet of things: architectures and applications course at (UMA)90Table 107. Suggested content for the teaching assistant part of the internet of things: architectures and applications course at (UMA)91Table 108. Recommended Textbook of all topics and subjects of the internet of things: architectures and applications course at (UMA)92Table 109. Recommended relevant courses to all topics and subjects of the internet of things: architectures and applications course at (UMA)92Table 110. Weekly plan and details of all topics and subjects of machine learning course at (UMA).93Table 111. Suggested content for the teaching assistant part of machine learning course at (UMA).93Table 111. Suggested content for the teaching assistant part of machine learning course at (UMA).93Table 111. Suggested content for the teaching assistant part of machine learning course at (UMA).93
Table 102. Weekly plan and details of all topics and subjects of embedded systems course at (USI).88Table 103. Recommended Textbook of embedded systems course at (USI)88Table 104. Weekly plan and details of all topics and subjects of recent advances in machine learning course at (USI)89Table 105. Recommended Textbook of recent advances in machine learning course at (USI)89Table 106. Weekly plan and details of all topics and subjects of the internet of things: architectures and applications course at (UMA)90Table 107. Suggested content for the teaching assistant part of the internet of things: architectures and applications course at (UMA)91Table 108. Recommended Textbook of all topics and subjects of the internet of things: architectures and applications course at (UMA)92Table 109. Recommended relevant courses to all topics and subjects of the internet of things: architectures and applications course at (UMA)92Table 109. Recommended relevant courses to all topics and subjects of the internet of things: architectures and applications course at (UMA)92Table 110. Weekly plan and details of all topics and subjects of machine learning course at (UMA)92Table 111. Suggested content for the teaching assistant part of machine learning course at (UMA)93Table 111. Suggested content for the teaching assistant part of machine learning course at (UMA)95Table 112. Recommended Textbook of machine learning course at (UMA)95

Table 114.Weekly plan and details of all topics and subjects of information processing (elements ofstatistical data analysis for engineers) at (UPB)96
Table 115. Suggested content for the teaching assistant part of information processing (elements ofstatistical data analysis for engineers) at (UPB)97
Table 116. Recommended Textbook of information processing (elements of statistical data analysisfor engineers) at (UPB)98
Table 117. Recommended relevant courses to information processing (elements of statistical dataanalysis for engineers) at (UPB)
Table 118. Weekly plan and details of all topics and subjects of intelligent measurement systems(wireless sensor networks) course at (UPB)99
Table 119. Suggested content for the teaching assistant part of intelligent measurement systems(wireless sensor networks) course at (UPB)100
Table 120. Recommended Textbook of intelligent measurement systems (wireless sensor networks) course at (UPB) 101
Table 121. Recommended relevant courses to intelligent measurement systems (wireless sensor networks) course at (UPB)
Table 122. Courses that are not listed in report of partner countries 102
Table 123. Courses that are offered but need to be updated
Table 124. Proposed form to collect the feedback regarding identifed GAPS 112
Table 125. Offered Courses index of involved partners in project 113
Table 126. Offered Common Course index of involved partners in project 114

Table of Figures

Figure 1. Gap Identification Procedure
--

1 Introduction

1.1 Abstract

The IoT Consortium consists of:

The consortium consists of 10 partners including 4 European and 6 Iranian-Iraqi ones ranging from academia to industry. Involvement of non-academic partner, Petanux GmbH (PG), ensures harmonizing academic training with market needs and the necessary skills in the business sector and the European Industrial knolwedge transfer to Iran, as a way to expand employment opportunities of students and internship programs.

Partner Country: Iran

- Shahid Chamran University of Ahvaz (SCU)
- University of Sistan and Baluchestan (USB)
- Islamic Azad University (IAU)

Institute for Advanced Studies in Basic Sciences (IBS)

Partner Country: Iraq

- University of Wasit (UWA)
- University of Sumer (USU)

Internet of Things (IoTrain) is recognized as a revolution in engineering with various real world applications: climate change, health, manufacturing, environmental pollution, smart offices/vehicles, agriculture, energy, traffic management, intelligent cities. IoT aims to catch the future technological emerging results in the context of Industry 4.0 and cyber physical manufacturing systems from production to maintenance, customer relationship and marketing. Today, the Industrial Internet of Things (IIoT) is one of the most popular technologies in the industry that supports digitalization of manufacturing in line with industry 4.0 strategies. It is reported that around 30 billion devices connected wirelessly globally are planned to be to the internet by 2020 [https://tinyurl.com/IoTRAIN20]. According to the European Commission (EC) [tinyurl.com/zhwno3z], in 2020, it is expected that "the market has developed at a really fast pace so that IoT will clearly be seen as the next big thing in ICT". In this regard, the IoT market value of Europe will reach one trillion EURO by 2020 and 6 billion devices will be connected through IoT.

With IoT shaping the future of smart societies, it is crucial for next generation higher education (HE) institutions to actively train workforce for the IoT industry and market. The goal of IoTrain project is to develop a modernized master's program for IoT engineering education in partner countries, covering critial technologies needed in the local market.

This report, as deliverable D1.1 of the IOTrain project, summarizes the outcomes of exploring and analyzing the existing relevant HE curricula, for the purpose of gap identificatin and callibration of teaching material. The report will be the stepping stone for WP1 and will be largely promoted across Iranian and Iraqi HEIs and enterprises, as well as, policy makers in the Iranian and Iraqi HE sectors. The aim is to have a clear picture and a common understanding of the analysis results, their interpretation and consequences in order to design the required steps in adapting the contents of the proposed modules.

This report is the Deliverable 1.1 in Workpackage 1, entitled "Report on Analysis of existing courses and resources". The report summarizes a variety of activities that have been performed for identifying gaps related to Higher Education (HE) in Iran and Iraq in IoT sector. For this reason, various data collection procedures have been performed. A high-level overview of the performed procedures is presented in Figure 1. In the first step, we collected the data from all Iranian, Iraqi and European partners through a pre-designed form (questionnaire) shown in the next section. Afterwards, we collected the filled forms from each partner and analysed the inputs.

1.2 The scope of the document, i.e., what is discussed in this document and what is not discussed

This document provides an overview of existing courses and modules being offered in the IoT studies worldwide. To this, we already analysed most of well-known IoT programs and realized what is normally being offered in these programs. Afterwards and after having a concrete list of courses and modules, we analysed which of these modules are already available in the consortium partnership and being offered by the consortium, partner and what modules need to be designed and prepared from scratch to complete our IoT curriculum. In this regard, we studies bachelor and master degrees of IoT in European, Iranian, Iraqi countries in particular and rest of the work as well.

1.3 Purpose of the document

This document aims to provide a sort of requirement analysis on already existing modules and required modules for having a complete IoT curriculum.

1.4 Relation to other deliverables

This deliverable should be used as a sort of starting point for further discussions in other deliverables of the WP1 and WP2 to plan the design of new curriculum.

2 DESIGNED QUIESTIONNAIRE FOR PARTNER INPUT PROCESS

This questionnaire consists of three main parts, part 1 lists known international IoT programs, part 2 lists existing courses at a partner institution that are related to the general field of IoT, and for each course, part 3 lists the weekly plan / topics, references, suggested new topics to be added, and similar national and international courses known to the institution.

Detailed syllabus of any relevant program, course and studies to the IoT.

Part 1:

Question 1.1) Please add any international Master's degree/program that you know in the field of Internet of Things.

University Name	Country	Program Title	Web Page

Table 1. Designed Template for collecting the list of relevant IoT Degrees/Programs

Part 2:

Question 2.1) Please add existing courses and resources at your university that is related to the Master of Internet of Things.

Table 2. Designed Template for collecting the list existing courses and resourcesat partners university that can be related to the Master of IoT

#	Please add any course that is taught in your university and is related to IoT. Please be aware you can also add courses that are planned or expected to be taught, but not yet taught at your university.		Level of courses		Academic staff expertise existence	
			MA	Yes	NO	
1						
2						
3						

 $\ensuremath{^*}$ in case of need, you can add or delete further rows to the table.

Part 3 (Please copy all tables of this part for each added course in part 2):

Name of the Course	
Study Program	

Degree Level (MA/BA)	
Your Name	
Your affiliation	

Question 3.1.

In the following table, please list a weekly plan and details of all topics and subjects that you teach in this course.

Week #	Theory/Practice	Macro Topics	Micro Topics	Pre-requisites	Comments
Week 1					
Week 2					
Week 3					

Table 3. Designed Template for collecting weekly plan

* in case of need, you can add or delete further rows to the table.

Question 3.2.

In case, your course has also teaching assistant part, please indicate the details of these sessions as well.

Week #	Theory/Practice	Macro Topics	Micro Topics	Pre-requisites	Comments
Week 1					
Week 2					
Week 3					

* in case of need, you can add or delete further rows to the table.

Question 3.3.

What other topics, subjects or assignments would you suggest to be taught in the frame of this course to make your listed subjects in this course completer and more practical? Your input to this question is important, because they can help us to cover your wishes in designing required curriculum for this course or even designing new course and cover your wished topics.

Suggested Topic	Required Sessions	Pre-requisites

* in case of need, you can add or delete further rows to the table.

Question 3.4.

What references do you use for your course?

Table 6. Designed Template for collecting the list the Book or Reference

Title of the Book or Reference	Publication Year	Link to the reference

* in case of need, you can add or delete further rows to the table.

Question 3.5.

There are normally many similar courses being taught worldwide. Many people are used to compare their courses content wise with other similar course, mainly from high rank universities or professors. Please provide a link to at least 5 similar courses (2 national and 3 international) that you may use them as base or would suggest them in terms of the content and quality of the course.

Table 7.	Designed	Template for	collecting	link of	similar	course
Table /.	Designed	i chipiate i oi	concerng		Similar	course

#	Nat./Int.	Link to the course
1	National	
2	National	
3	International	
4	International	
5	International	

Question 3.6.

What other subjects and/or courses in addition to your course would you suggest to be taught to an IoT graduate? The aim of this question is to realize subjects and outlines that are not in your course, but can make IoT graduates more competent and competitive to the market and industry.

Table 8. Designed Template for collecting suggested topic that are not in existing course

Suggested Topic	Required number of Sessions	Pre-requisites

* in case of need, you can add or delete further rows to the table.

3 ANALYSIS OF EXISTING IOT DEGREES IN PARTNER, PROGRAM AND OTHER DEGREES

In order to precede the potential required and existing courses in the master of IoT degree program, we studied various degree programs from partner countries as well as courtiers outside the IoTrain partnership. In this regard, after collecting the questionnaire results from Iran, Iraq, Germany, UK, and Romania, we carefully considered other countries in following three categories: Partner Countries, Program Countries, and Other Countries. Then, the submitted questionnaires were reviewed. We analysed and compared course of other countries and program countries with the existing courses at partner countries. All courses that exist in other degree programs, but are not listed in our courses were identified as gap and listed in section 6.

PARTNER COUNTRIES

From the partner countries (Iran, Iraq), we asked the following partners to fill the forms. We realized that no master of IoT degree programs currently exist in Iran and Iraq.

Partner Country: Iran

- Shahid Chamran University of Ahvaz (SCU)
- University of Sistan and Baluchestan (USB)
- Islamic Azad University (IAU)
- Institute for Advanced Studies in Basic Sciences (IBS)

Partner Country: Iraq

- University of Wasit (UWA)
- University of Summer (USU)

University Name	Country	Program Title	Web Page
University Bourgogne Franche- Comté	France	Master in Internet of Things (IoT)	https://www.ubfc.fr/en/formations/masters/master-iot/
EUROCOM Graduate School and Research Center in Digital Sciences	France	Master in Internet of Things (IoT)	https://www.eurecom.fr/en/teaching/master- science/master-degree-internet-of-things- IoT?utm_source=FindaMasters&utm_medium=Master
École Polytechniq ue	France	the Internet of Things: Innovation and Management Master's	https://programmes.polytechnique.edu/en/master-all- msct-programs/internet-of-things-innovation-and- management-master/course-content

Table 9. International IoT programs in EU countries

		Program	
Hochschule für Gestaltung Schwäbisch Gmünd	German y	Bachelor Internet of Things (Internet der Dinge)	https://www.hfg-gmuend.de/studium/internet-der-dinge
Hochschule Aalen	German y	Bachelor Internet of Things (Internet der Dinge)	https://www.hs-aalen.de/de/courses/66-internet-der- dinge
Technical University of Munich	German y	Master of Science in Communicatio ns Engineering	https://www.ei.tum.de/msce/academic-program/msce- curriculum/system-design-for-the-internet-of-things/
University of the Aegean	Greece	MSc Internet of Things: Intelligent Environments in Next Generation Networks	https://msc.icsd.aegean.gr/iot/?lang=en
Technologic al University Dublin	Ireland	Master of Engineering in Internet of Things Technologies	https://www.tudublin.ie/study/postgraduate/courses/int ernet-of-things-technologies/
University of Calabria	Italy	Computer Engineering for the Internet of Things	<u>https://www.dimes.unical.it/content/computer-</u> engineering-iot
Universita degli studi di Salerno	Italy	Master of Science in Computer Science / Specialisation: Internet of Things	https://corsi.unisa.it/informatica-magistrale/en/home
University Politehnica of Bucharest	Romani a	Bachelor of Science in Internet of Things (in	https://www.dropbox.com/s/27dlkv5rxd5zk0k/ UPB_FILS_IOT_Program_BA.pdf

		French and English)	
Polytechnic University Madrid	Spain	Master of Science in Internet of Things	https://masteriot.etsist.upm.es/?lang=en
University of Salamanca	Spain	Master in Internet of Things	https://iot.usal.es/english
КТН	Sweden	MSc Embedded Systems / Embedded Control track	https://www.kth.se/en/studies/master/embedded- systems/description-1.70455
Technical University of Graz	Austria	Master Information and Computer Engineering / Specialization: Internet of Things	https://www.tugraz.at/en/studying-and- teaching/degree-and-certificate-programmes/masters- degree-programmes/information-and-computer- engineering/
Technical University of Vienna	Austria	Master- Studiengang Internet of Things und intelligent System	https://www.technikum-wien.at/studium/master/

OTHER COUNTRIES

Table 10. International IoT programs in other countries

University Name	Country	Program Title	Web Page
La Trobe University	Australia	Master of Internet of Things	https://www.latrobe.edu.au/courses/master-of- internet-of-things
UTHM- Universiti Tun Hussein Onn Malaysia	Malaysia	Master of Science in Internet of Things	https://fkee.uthm.edu.my/index.php/102- programme/postgraduates-programmes/243-master- of-science-in-internet-of-things

Acian Instituto		IoT Systems	https://sot.ait.ac.th/programs/information.and
of Technology	Thailand	Engineering	communications-technologies/iot/
Royal Holloway	United Kingdom	Masters in The Internet of Things	https://www.royalholloway.ac.uk/research-and- teaching/departments-and-schools/computer- science/studying-here/postgraduate/masters-in- internet-of-things
UWS- University of the West of Scotland	United Kingdom	MSc Internet of Things	https://www.uws.ac.uk/study/postgraduate/postgra duate-course-search/internet-of-things/
Newcastle University	United Kingdom	Embedded Systems and Internet of Things (ES-IoT) MSc	https://www.ncl.ac.uk/postgraduate/courses/degree s/embedded-systems-internet-of-things-msc/#profile
University of Bradford	United Kingdom	MSc in Internet of Things (IoT)	https://www.bradford.ac.uk/courses/pg/internet-of- things/?utm_source=keystone&utm_medium=profile &utm_content=ma+internet+of+things&utm_campai gn=international+2020
University of Southampton	United Kingdom	MSc in Internet of Things (IoT)	https://www.southampton.ac.uk/courses/internet- of-things-masters-msc
Queen Mary University of London	United Kingdom	MSc in Internet of Things (Data)	https://www.qmul.ac.uk/postgraduate/taught/cours efinder/courses/internet-of-things-data-msc/
University of Essex	United Kingdom	MSc in Internet of Things	https://www.essex.ac.uk/courses/pg00548/1/msc- internet-of-things
Illinois Institute of Technology	USA- Chicago	Computer Engineering in Internet of Things (M.A.S.)	https://www.iit.edu/academics/programs/computer- engineering-internet-things-mas
University at Buffalo	USA- NY- Buffalo	Engineering Sciences MS: Focus on Internet of Things	http://engineering.buffalo.edu/ee/grad/graduate_pr ograms/engineering-sciences-iot.html
Stanford	USA- California	Internet of Things Graduate	https://online.stanford.edu/programs/internet- things-graduate-certificate

		Certificate	
Purdue University	USA- Indiana	Internet of Things	https://engineering.purdue.edu/ECE/Academics/PMP /Areas/internet-of-things
UNM-The University of New Mexico	USA-New Mexico	The Master of Science in Computer Engineering with a concentration in Internet of Things (IoT)	http://online.unm.edu/online-degrees/computer- engineering-internet-of-things-concentration- m.s.html

4 ANALYSIS OF EXISTING COURSES IN PARTNER COUNTRIES

4.1 INFORMATION RETRIEVAL

This course is being offered as part of Master of Science degree in computer science and Artificial Intelligence at the Institute for Advanced Studies in Basic Sciences (IBS). The course consists of chapters ranging from the introduction and Primaries, Compression, Evaluation, and Introduction on NLP. The IBS has enough experience in teaching of this course and can provide enough materials for this course to the consortium. IBS suggests topics of "Statistics and Probability, Programming Knowledge and Linux Knowledge" to be taught in the frame of this course to make the listed subjects completer and more practical.

IBS uses the following 3 international courses links as the base and would suggest them for their content and quality of the course:

- http://web.stanford.edu/class/cs276/
- https://www.fi.muni.cz/~sojka/PV211/
- https://www.cs.utexas.edu/~mooney/ir-course/syllabus.html

The course consists of a practical part in a form of the teaching assistantship. Further details and breakdown of current topics in this course are given in Table 11. Table 12 shows the suggested content for the teaching assistant part of this course. Recommended Textbooks are shown in Table 13. Table 14 shows subjects and/or materials that are not in this course, but can make IoT graduates more competent and competitive in the market and industry.

Week #	Session #	Macro Topics	Micro Topics	Pre-requisites
Mook 1	Session 1	Introduction and Primaries – 01	-	-
weeк 1	Session 2	Introduction and Primaries – 02	-	-
Week 2	Session 1	Boolean retrieval	-	Linux

Table 11. Weekly plan and details of all topics and subjects of information retrieval course at (IBS)

	Session 2	Dictionary	-	-
Week 2	Session 1	Tolerant Retrieval	-	-
week 3	Session 2	Vector Space Models	-	Statistics
Mook 4	Session 1	Index Construction – 01	-	Programming
vveek 4	Session 2	Index Construction – 02	-	Programming
Wook F	Session 1	Compression	-	Programming
Week 5	Session 2	Compression	-	Programming
Week 6	Session 1	TF-IDF – 01	-	Statistics
	Session 2	TF-IDF – 02	-	Statistics
Week 7	Session 1	Evaluation – 01	-	Statistics
	Session 2	Evaluation – 02	-	Statistics
Wash 0	Session 1	Web search basics	-	Programming
vveek o	Session 2	Web Crawlers	-	Programming
Week 0	Session 1	Introduction to Text classification	-	Statistics
week 9	Session 2	Introduction to Naive Bayes	-	Statistics
Week	Session 1	Introduction on NLP – 01	-	-
10	Session 2	Introduction on NLP – 02	-	-

Table 12. Suggested content for the teaching assistant part of information retrieval course at (IBS)

Week #	Session #	Macro Topics	Micro Topics	Pre-requisites
Mook 1	Session 1	Programming with Python	-	-
Week 1	Session 2	Programming with Python	-	-
Week 2	Session 1	Programming with Python	-	-
	Session 2	Programming with Python	-	-
March 2	Session 1	Programming with Python	-	-
Week 3	Session 2	Programming with Python	-	-
Week 4	Session 1	Programming with Python	-	-

	Session 2	Programming with Python	-	-
Week 5	Session 1	Advanced Text Processing using NLTK library	-	-
	Session 2	Advanced Text Processing using NLTK library	-	-
WeekC	Session 1	Advanced Text Processing using NLTK library	-	-
Week 6	Session 2	Advanced Text Processing using NLTK library	-	-
Week 7	Session 1	Advanced Text Processing using NLTK library	-	-
	Session 2	Advanced Text Processing using NLTK library	-	-
Week 8	Session 1	Advanced Text Processing using NLTK library	-	-
	Session 2	Advanced Text Processing using NLTK library	-	-

Table 13. Recommended Textbook of information retrieval course at (IBS)

Title of the Book or Reference	Publication Year	Link to the reference
Introduction to Information Retrieval	2008	https://nlp.stanford.edu/IR- book/pdf/irbookonlinereading.pdf
Author: C. Manning, P. Raghavan, and H. Schütze	2011	-
Selected papers	2021	-

Table 14. Recommended relevant courses to information retrieval course at (IBS)

Suggested Topic	Required Sessions	Pre-requisites
Statistics and Probability	4	Introduction of distributions and statistic, statistical tests, and the concept of probability and conditional independence
Programming Knowledge	8	-

Linux Knowledge	4	-

4.2 FOUNDATIONS OF NATURAL LANGUAGE PROCESSING

This course is being offered as part of Master degree in computer science at the Institute for Advanced Studies in Basic Sciences. The course consists of chapters ranging from the Programming with Python, Advanced Text Processing using NLTK library, Linux Basics, and Text Processing in Linux. The IBS has enough experience in teaching of this course and can provide enough materials for this course to the consortium. IBS suggest topics of "Statistics and Probability, Programming Knowledge and Linux Knowledge" to be taught in the frame of this course to make your listed subjects in this course more complete and practical.

IBS uses two international courses (below links) as base or would suggest them in terms of the content and quality of the course:

- https://www.cs.utexas.edu/~mooney/cs388/syllabus.html
- https://people.cs.umass.edu/~mccallum/courses/inlp2007/syllabus.html

The practical part of the course is available in the form of the teaching assistantship. Further details and breakdown of current topics in this course are given in Table 15. Table 16 shows the suggested content for the teaching assistant part of this course. Recommended Textbooks are shows in Table 17. **Error! Reference source not found.** shows subjects and/or courses that are not in this course, but can make IoT graduates more competent and competitive to the market and industry.

Week #	Session #	Macro Topics	Micro Topics	Pre-requisites
Mack 1	Session 1	Introduction on Course	-	-
week 1	Session 2	Introduction to NLP	-	-
Wook 2	Session 1	Introduction to Machine Learning	-	Statistics
Week 2	Session 2	Introduction to Machine Learning	-	Statistics
Week 2	Session 1	Word Sense Disambiguation	-	Statistics
Week 5	Session 2	Word Sense Disambiguation	-	Statistics
Mook 4	Session 1	Regular Expression	-	Programming
week 4	Session 2	Edit Distance	-	-
	Session 1	Naïve Bays – intro	-	Statistics
Week 5	Session 2	Naïve Bays	-	Statistics
Maak C	Session 1	Intro on Sentiment Analysis	-	Statistics
week o	Session 2	Language Models	-	Statistics
Mook 7	Session 1	Language Models	-	Statistics
week /	Session 2	Word Embedding	Introduction	Programming
Maak 9	Session 1	Word Embedding	Word2Vec	Programming
week a	Session 2	Morphology	Introduction	Programming
Week 9	Session 1	Morphology	Morphological Segmentation	Programming

Table 15. Weekly plan and details of all topics and subjects of foundations of natural language processing course at (IBS)

16.04.2021

	Session 2	POS Tagging	-	Programming
Week	Session 1	POS Tagging	-	Programming
10	Session 2	Machine Translation	-	Advanced Linux
Week	Session 1	Machine Translation	-	Advanced Linux
11	Session 2	Introduction on Persian NLP	-	-

Table 16. Suggested content for the teaching assistant part of foundations of natural language processing course at (IBS)

Week #	Session #	Macro Topics	Micro Topics	Pre-requisites
Wook 1	Session 1	Programming with Python	-	-
Week 1	Session 2	Programming with Python	-	-
Week 2	Session 1	Programming with Python	-	-
week z	Session 2	Programming with Python	-	-
Maak 2	Session 1	Advanced Text Processing using NLTK library	-	-
week 3	Session 2	Advanced Text Processing using NLTK library	-	-
	Session 1	Advanced Text Processing using NLTK library	-	-
week 4	Session 2	Advanced Text Processing using NLTK library	-	-
Week F	Session 1	Linux Basics	-	-
Week 5	Session 2	Linux Basics	-	-
Week 6	Session 1	Linux Basics	-	-
Week o	Session 2	Linux Basics	-	-
Week 7	Session 1	Text Processing in Linux	-	-
Week 7	Session 2	Text Processing in Linux	-	-
Week 9	Session 1	Text Processing in Linux	-	-
Week 8	Session 2	Text Processing in Linux	-	-

Table 17. Recommended Textbook of foundations of natural language processing course at (IBS)

Title of the Book or reference	Publication Year	Link to the reference
Statistical Machine Translation Author: Philipp Koehn	2012	https://www.cambridge.org/core/books/statistical- machine- translation/94EADF9F680558E13BE759997553CDE 5
Natural Language Processing with Python	2018	https://www.nltk.org/book/
Selected papers	2021	

 Table 18. Recommended relevant to foundations of natural language processing course at (IBS)

Suggested Tonic	Required	Pre-requisites
Suggested Topic	Sessions	rierequisites

Statistics and Probability	10	-
Linear Algebra	10	-
Computer Programming	10	-
Linux and Linux bash	10	
Programming	10	-

4.3 REAL-TIME EMBEDDED SYSTEMS

This course is being offered as part of the Master's degree in computer science at the Institute for Advanced Studies in Basic Sciences (IBS), USI, and SCU. The course consists of chapters ranging from the Introduction to Real-Time Embedded Systems, Priority Driven Real-Time Scheduling, Energy Efficient Scheduling, Clock Driven Real-Time Scheduling, and Fault Tolerance in real-time embedded systems. The IBS has enough experience in teaching of this course and can provide enough materials for this course to the consortium. IBS suggest topic of "Modeling and simulation of Cyber-Physical Systems" to be taught in the frame of this course to make your listed subjects in this course more complete and practical.

IBS uses courses 1 national and 3 international below links as base or would suggest them in terms of the content and quality of the course:

National

- https://ece.ut.ac.ir/courses-websites
- <u>http://cw.sharif.edu/course/info.php?id=333</u>

International

- https://tec.ee.ethz.ch/education/lectures/embedded-systems.html
- http://users.ece.utexas.edu/~gerstl/ee445m_s19/syllabus.html
- https://ece.vt.edu/grad/courses/5434

The practical part of the course is offered in the form of teaching assistantship. Further details and breakdown of current topics in this course are given in Table 19. Table 20 shows the suggested content for the teaching assistant part of this course. Recommended textbooks are shown in Table 21.

Week #	Theory/Practice	Macro Topics	Micro Topics	Pre- requisites	Comments
Week 1	Theory	Introduction to Real-Time embedded Systems	 Definition of an embedded system Definition of a real-time system Definition of a real-time embedded system Wrong thoughts about real-time systems Examples and Application of the real-time embedded systems 	-	

Table 19	Weekly plan	and details of a	II topics an	nd subjects of	real-time	embedded	systems	course at ((IBS)
TUDIC 13.	weekiy plan	and actails of a	ii topics ai	iu subjects of	icar unic	ciniscuucu	Systems	course at t	,100)

Week 2	Theory	Basic concepts in the real-time embedded systems	 Timing constraints Basic concepts (Job, Task, Task set) Conventional classification of the real-time embedded systems (Hard, Soft, Firm) 	ntroduction to Real-Time embedded Systems
Week 3	Theory	A reference model of the real-time embedded system	 Workload Model Types of tasks Worst-case execution time (WCET) Independent and dependent jobs Preemptive and non-preemptive scheduling Valid, feasible, and optimal schedule Performance criteria in real- time embedded systems 	Basic concepts in the real-time embedded systems
Week 4	Theory	Priority Driven Real-Time Scheduling (1)	 Clock driven scheduling Priority driven scheduling EDF scheduling Optimality/non- Optimality of EDF scheduling 	A reference nodel of the real-time embedded system
Week 5	Theory	Priority Driven Real-Time Scheduling (2)	 LRT scheduling LST scheduling Optimality/non- Optimality of LRT and LST Anomalies in priority-driven scheduling 	Priority Driven Real- Fime Scheduling 1)
Week 6	Theory	Clock Driven Real-Time Scheduling	 Scheduling periodic jobs Scheduling aperiodic jobs Scheduling r Scheduling sporadic jobs Cyclic execution Slack Stealing 	A reference nodel of the real-time embedded system

Week 7	Theory	Fixed Priority Scheduling	 Rate monotonic Deadline monotonic Schedulablility conditions Feasibility conditions Optimality of fixed priority scheduling 	A reference model of the real-time embedded system
Week 8	Theory	Energy Efficient Scheduling Algorithms	 Energy Aware scheduling vs Energy Efficient scheduling DVFS Algorithm DVFS Applicability 	A reference model of the real-time embedded system
Week 9	Theory	Energy Aware Scheduling Algorithms	 <i>PFP_{ASAP}</i> algorithm Lazy Scheduling algorithm (LSA) Optimality of <i>PFP_{ASAP}</i> Optimality of LSA 	 Priority Driven Real- Time Scheduli ng (1 and 2) Clock Driven Real- Time Scheduli ng
Week 10	Theory	Fault Tolerance in real-time embedded systems	 Basic concepts (faults, errors, failures) Fault tolerance techniques Recovery block techniques N-version programming 	

Table 20. Suggested content for the teaching assistant part of real-time embedded systems course at (IBS)

Week #	Theory/Practice	Macro Topics	Micro Topics	Pre- requisites	Comments
Week 1	Theory	Some exercises	Chapter 1 of real- time systems reference book		
Week 2	Theory	Some exercises	Chapter 2 of real- time systems reference book		
Week 3	Theory	Some exercises	Chapter 3 of real- time systems reference book		

Week 4	Practice	Modeling and simulation of the real-time system (1)	Modeling and simulation of the tasks in real-time systems using C/C++ programming	
Week 5	Practice	Modeling and simulation of the real-time system (2)	Implementation of scheduling algorithms using C/C++	
Week 6	Theory	Some exercises	Chapters 5 and 6 of real-time systems reference book	
Week 7	Practice	Emulators (1)	Introduction to emulation Comparing emulation and simulation	
Week 8	Practice	Emulators (2)	Working with emulators of real- time systems	
Week 9	Practice	PFP _{ASAP}	Implementation of <i>PFP_{ASAP}</i> using C/C++	

Table 21. Recommended Textbook of real-time embedded systems course at (IBS)

Title of the Book or reference	Publication Year	Link to the reference	
Real-Time	2000	http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.387.14	
System Software			
Reliability	2006	https://www.springer.com/gp/book/9781852339500	
Reliability of			
Computer			
Systems and		https://www.wiley.com/en-	
Networks: Fault	2003	ir/Reliability+of+Computer+Systems+and+Networks:+Fault+Tole	
Tolerance,		ance,+Analysis,+and+Design-p-9780471464068	
Analysis, and			
Design			

4.4 DATA MINING

This course is being offered as part of the Master's degree in Artificial Intelligence at the Institute for Advanced Studies in Basic Sciences (IBS). The course consists of chapters ranging from the Introduction, Data, Pre-processing, Data Storage & OLAP, Classification, Clustering. The IBS has enough experience in teaching of this course and can provide enough materials for this course to the consortium. IBS suggest topics of "Statistics & Probability: (only 2 to 3 sessions require this topic) and Programming needed to do projects" to be taught in the frame of this course to make your listed subjects in this course more complete and practical.

IBS uses 3 international below links as base or would suggest them in terms of the content and quality of the course:

 https://ocw.mit.edu/courses/sloan-school-of-management/15-062-data-mining-spring-2003/

- https://www.ischool.berkeley.edu/courses/info/290t/dma
- https://people.seas.harvard.edu/~yaron/SocialDataMining/index.html

The practical part of the course is offered in the form of teaching assistantship. Further details and breakdown of current topics in this course are given in Table 22. Recommended textbooks are shown in Table 23. Table 24 shows subjects and/or courses that are not in this course, but can make IoT graduates more competent and competitive to the market and industry.

Week	Session	Topic(s)	Details	Pre-requisites
Week 1	Session 1	Introduction	Definition of data mining, introduction of various applications, conferences, and journals	None
	Session 2	Data 1	Definition of a data object, different types of attributes, statistical description of data (brief overview of distribution, descriptive graphs such as box plot,), and outliers	Preliminary Statistics
Week	Session 1	Data 2	Graphical representation of data and overview of the criteria for the similarity of data	Programming and the ability to plot various graphs are needed for the exercises.
2	Session 2	Pre-processing 1	The concept of quality in data and the main tasks in pre- processing, data cleaning	
Week 3	Session 1	Pre-processing 2	Data integration, data reduction, data transformation, and data discretisation	Statistics at the introductory level
	Session 2	Data Storage & OLAP 1	Preliminary concepts, differences with OLTP, the ETL process, the concepts of data cube and dimensions of data	Database at the level of understanding the relational model
Mask	Session 1	Data Storage & OLAP 2	User aspects and implementation, optimisation, design and query	Undergraduate Database
Week 4	Session 2	Frequent Pattern Analysis 1	Introduction and evaluation of criteria for efficient patterns, algorithms such as Apriori and FT-tree, and topics on scaling	Undergraduate Algorithms
Week 5	Session 1	Frequent Pattern Analysis 2	Continuation of algorithms, methods of evaluating FPs and analysis of results plus examples, support/confidence, Lift, the X ² test, and Jaccard	None
	Session 2	Classification 1	Definition of supervised and unsupervised learning, introductory concepts and discussion of model validation & testing	

Table 22. Weekly plan and details of all topics and subjects of data mining course at (IBS)

Week 6	Session 1	Classification 2	Decision tree, Bayesian classifier, linear methods & logistic, regression	Introductory Statistics
	Session 2	Classification 3	Methods of evaluation and selection of a model • Holdout method • Cross-validation • Bootstrap • ROC Curves Definitions: accuracy, error rate, sensitivity and specificity	
	Session 1	Classification 4	Ensemble classifiers and transfer learning (basic)	This term, for example, I was not able to cover the last topic.
Week 7	Session 2	Clustering 1	Definition, applications, discussions on the quality of clustering, partitioning methods (kmeans, kmedian, kmodes,) – methods kernel	
Week 8	Session 1	Clustering 2	Completion of topics from previous session, hierarchical clustering, and introduction of the relevant algorithms	
	Session 2	Clustering 3	Probabilistic hierarchical clustering method, grid based, density based, introduction and discussion of the relevant algorithms	
Week 9	Session 1	Clustering 4	Clustering evaluation: Entropy- based, Matching based, homogeneity, Completeness, Clustering tendency Clustering stability	
	Session 2	Usually because of discussions in class, the above plan may require more time in which case the remaining session(s) will be used to cover them.		

Table 23. Recommended Textbook of data mining course at (IBS)

Title of the Book or	Publication	Link to the reference
reference	Year	
Autonomous Mobile Robots	2021 (under last editing)	Persian book (under publishing and translating to English)

Robot motion planning	2012	https://www.springer.com/gp/book/9780792392064
Motion Planning	2011	http://robotics.cs.uiuc.edu/~lavalle/papers/Lav11b.pdf

Table 24. Recommended relevant courses to data mining course at (IBS)

Proposed topic or subject	Proposed number of sessions	Pre-requisite topics
Statistics & Probability	3 weeks	
Programming	3 weeks	

4.5 FOUNDATIONS OF EMBEDDED IOT SYSTEMS

This course is being offered as part of the Master's degree in Computer Science at the Islamic Azad University (IAU). The course consists of chapters ranging from the Architecture of Embedded IoT Systems, Software for Embedded IoT Systems, Powering the Internet of Things, IoT System Design. IAU uses 4 international below links as base or would suggest them in terms of the content and quality of the course:

- http://foe.mmu.edu.my/v3/main/undergrad/subject/ECE3186.html
- http://www.traininginlucknow.in/best-embedded-system-training-in-Lucknow.html
- https://www.southampton.ac.uk/courses/internet-of-things-masters-msc
- <u>https://www.coursera.org/learn/iot</u>

Details suggested course shows in Table 25 and recommended textbooks are shown in Table 26.

Topic(s)	Details	Pre-requisites
Architecture of Embedded IoT Systems	- Typical device system architecture: microcontroller, sensors/actuators, transceiver, RTC etc - Basic concepts: storage and CPU, data movement, fetch- execute, accelerators, input/output inc. SPI/I2C, peripherals - Embedded device memory architecture; SRAM, DRAM, Flash etc - Causes and implications of memory- or compute- constrained devices	
Software for Embedded IoT Systems	Embedded programming in C: flow control, function decomposition, data representation and structures, structured programming, addressing memory-mapped IO, interfacing with IO, peripherals, timers and	

Table 25. Suggested topics for foundations of embedded IoT systems course at (IAU)

	interrupts - Software debugging and testability - Cross compilation - Operating	
	systems for IoT devices (e.g. Contiki, RIOT-OS, mbed)	
Powering the Internet of Things	- Energy for computing and communication, power budgeting, duty cycling - Battery-powered and self- powered (energy harvesting) system design	
IoT System Design	 MQQT: principles and capabilities - LoRaWAN, 6LowPAN: Forming an embedded IoT sensor network 	

Table 26. Recommended Textbook of foundations of embedded IoT systems course at (IAU)

Recommended book or source	Year of publication	Hyperlink
Embedded System Design Embedded Systems Foundations of Cyber- Physical Systems, and the Internet of Things	2018	https://www.springer.com/gp/book/9783319560434
Foundations of Embedded Systems	2019	https://www.amazon.com/dp/3030119602?tag=uuid10- 20
Learning Embedded Systems with MSP432 microcontrollers MSP432 with Code Composer Studio	2020	https://www.amazon.com/Learning-Embedded- Systems-MSP432- microcontrollers/dp/165982690X?tag=uuid10-20

4.6 IOT NETWORKS

This course is being offered as part of the Master's degree in Computer Science at the Islamic Azad University (IAU. The course consists of chapters ranging from the Network architectures and principles, Physical networks and their design Layered networking models, Emerging network technologies, Standardization of communication protocol.

IAU uses 3 international below links as base or would suggest them in terms of the content and quality of the course:

- https://www.edx.org/course/iot-networks-and-protocols
- https://iot.ieee.org/education/courses.html
- <u>https://academy.itu.int/index.php/main-activities/curriculum-development/internet-things-</u> training-programme-iottp

Details suggested course shows in Table 27 and Recommended textbooks are shown in Table 28.

Topic(s)	Details	Pre-requisites
Network architectures	Physical layer principles and	

Table 27 Suggested topics for IoT Networks course at (IAU)

and principles Physical	protocols (radio propagation,	
networks and their	modulation and detection)	
design Layered	Data link layer principles and	
networking models	protocols - Network layer	
	principles and protocols -	
	Transport layer principles and	
	protocols - Application layer	
	principles and protocols	
Example network	Bluetooth ZigBee	
protocols and	LoBa/LoBaWAN TCP/IP	
architectures		
	Security Concepts and	
	Terminology	
	TCP/IP and OSI Network Security	
	Access Control Issues (Packet	
	Filters, Firewalls)	
Network security	Communication Security (OSI	
neemonkseedanty	Layer Security Protocols)	
	Security Tools	
	Cryptography	
	System Security - Intruders and	
	Viruses	
	E-mail and Web Security	
Emerging network		
technologies		
Standardization of		
communication		
protocol		

Table 28. Recommended Textbook of IoT Networks course at (IAU)				
Recommended book or source	Year of publication	Hyperlink		
IoT Fundamentals: Networking Technologies, Protocols, and Use Cases for the Internet of Things 1st Edition	2017	-Protocols/dp/1587144565		
I nternet of Things for Architects: Architecting IoT solutions by implementing sensors, communication infrastructure, edge computing, analytics, and security	2018	https://www.amazon.com/Internet-Things- Architects-communication- infrastructure/dp/1788470591		
Towards Cognitive IoT Networks	2020	https://www.springer.com/gp/book/9783030425722		

4.7 CRYPTOGRAPHY

This course is being offered as part of the Master's degree in Computer Science at the Islamic Azad University (IAU). The course consists of chapters ranging from the Cryptography background, Mathematical background, Public key cryptosystems, Private key cryptosystems, Stream ciphers,

Block ciphers, Cryptographic modes, Cryptographic protocols, including TLS, Elementary cryptanalysis, Weaknesses in implementations, Hardware, Quantum cryptography.

IAU uses 2 international below links as base or would suggest them in terms of the content and quality of the course:

- https://crypto.stanford.edu/~dabo/courses/OnlineCrypto/
- <u>https://www.coursera.org/learn/crypto</u>

Details suggested course shows in Table 29 and recommended textbooks are shown in Table 30.

Topic(s)	Details	Pre-requisites
Cryptography background	Vocabulary - History - Steganography - Simple codebreaking - Information: confusion and diffusion, entropy - One-time pads and their failures	
Mathematical background	Finite Abelian Groups - Finite Fields Groups based on integer multiplication - Discrete logarithms - Groups based on elliptic curve Public and private key cryptography, shared secrets	
Public key cryptosystems	RSA, ElGamal	
Authentication		
Signatures		
Deniability		
Identity-based cryptography		
Private key cryptosystems		
Stream ciphers	LFSR, RC4, and later	
Block ciphers	Feistel, Rijndael, and later	
Cryptographic modes	ECB, CBC, GCM	
Cryptographic protocols, including TLS		

Table 29. Suggested topics for cryptography course at (IAU)

Table 30. Recommended Textbook of cryptography course at (IAU)

Recommended book or source	Year of publication	Hyperlink
Berry and Linoff. Mastering Data Mining. New York, NY: Wiley, 2000. ISBN:	2000	
U471331236. Hand, Mannila, and Smyth. Principles of Data Mining. Cambridge, MA: MIT Press, 2001. ISBN: 026208290X	2001	https://mitpress.mit.edu/books/principles-data- mining
The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Second Edition by Trevor Hastie, Robert Tibshirani,	2019	https://www.amazon.com/Elements-Statistical- Learning-Prediction-Statistics- ebook/dp/B00475AS2E
Jerome Friedman

4.8 MACHINE LEARNING FOR WIRELESS COMMUNICATIONS

This course is being offered as part of the Master's degree in Computer Science at the Islamic Azad University (IAU). The course consists of chapters ranging from the General introduction and fundamentals of machine learning, Revision of probability and statistics revision and Revision of linear algebra.

IAU uses 3 international below links as base or would suggest them in terms of the content and quality of the course:

- https://www.iith.ac.in/~asaidhiraj/ee5611_spring_2019.html
- https://wcsl.ece.ucsb.edu/MLcourse
- <u>http://home.iitk.ac.in/~rohitbr/courses.html</u>

Details suggested course shows in Table 31 and recommended textbooks are shown in Table 32.

Topic(s)	Details	Pre-requisites
General introduction and fundamentals of machine learning	Introduction to learning and machine learning: supervised/unsupervised/reinforcement learning	
Revision of probability and statistics revision		
Revision of linear algebra		

Table 31. Suggested topics for machine learning for wireless communications course at (IAU)

Table 32 Recommended	Textbook of wireles	s communications	course at (IALI)
Tuble 52. Recommended	Textbook of Wheres	5 communications	

Recommended book or source	Year of publication	Hyperlink
Machine Learning for Future Wireless Communications	2019	https://www.wiley.com/en- us/Machine+Learning+for+Future+Wireless+Commu nications-p-9781119562252
Applications of Machine Learning in Wireless Communications (Telecommunications)	2020	https://www.amazon.com/Applications-Learning- Wireless-Communications- Telecommunications/dp/1785616579

4.9 EMBEDDED PROCESSORS

This course is being offered as part of the Master's degree in Computer Science at the Islamic Azad University (IAU). The course consists of chapters ranging from the General Revision of RISC architecture principles, Processor RTL hardware blocks, Control path, Program Counter and Program Memory, Data path, ALU, Register files, caches, memories, synchronous RAM in processor designs, Embedded hardware blocks, hardware multipliers, DSP blocks, Instruction set and instruction decoder, Performance analysis, design for low energy consumption, Soft microprocessor cores, Altera NIOS, Xilinx picoBlaze, ARM Cortex-M1, OpenRISC, Application Specific PicoMIPS concept and examples, Multi and many-core embedded processor system, Application case studies.

IAU uses 5 international below links as base or would suggest them in terms of the content and quality of the course:

- https://www.arm.com/resources/education/online-courses
- https://www.gla.ac.uk/coursecatalogue/course/?code=ENG2029
- https://www.coursera.org/lecture/embedded-operating-system/embedded-processors-and-fpgas-xYVQD
- https://www.coursera.org/specializations/embedding-sensors-motors
- <u>https://www.udacity.com/course/embedded-systems--ud169</u>

Recommended textbooks are shown in Table 33.

Table 33. Recommended Textbook of embedded processors course at (IAL	J)
--	----

Recommended book or source	Year of publication	Hyperlink
Architecture Exploration for		
Embedded Processors with	2002	https://www.springer.com/gp/book/9781402073380
LISA		
Customizable Embedded	2006	https://www.elsevier.com/books/customizable-
Processors, Volume .1st Edition	2006	embedded-processors/ienne/978-0-12-369526-0
Designing Embedded		
Processors A Low Power	2007	https://www.springer.com/gp/book/9781402058684
Perspective		

4.10 DEEP LEARNING

This course is being offered as part of the Master's degree in Computer Science at the Islamic Azad University (IAU) and USI. The course consists of chapters ranging from the Convolutional Neural Networks, Deep Unsupervised Learning and Miscellaneous Topics.

IAU uses 3 international below links as base or would suggest them in terms of the content and quality of the course:

- https://www.coursera.org/specializations/deep-learning
- https://www.coursera.org/professional-certificates/tensorflow-in-practice
- https://www.coursera.org/learn/neural-networks-deep-learning

Details suggested course shows in Table 34 and recommended textbooks are shown in Table 35.

Topic(s)	Details	Pre-requisites
Convolutional Neural Networks	 Invariance, stability. Variability models (deformation model, stochastic model). Scattering networks Group Formalism Supervised Learning: classification. Properties of CNN representations: invertibility, stability, invariance. Covariance/invariance: capsules and related models. Connections with other models: dictionary learning, LISTA. Other tasks: localization, regression. Embeddings (DrLim), inverse problems Extensions to non-euclidean domains 	

Table 34. Suggested topics for deep learning course at (IAU)

	Dynamical systems: RNNs.	
	Guest Lecture	
	 Autoencoders (standard, denoising, 	
Deep	contractive, etc etc)	
Unsupervised	Variational Autoencoders	
Learning	 Adversarial Generative Networks 	
	 Maximum Entropy Distributions 	
	 Non-convex optimization for deep 	
Missellaneous	networks	
Topics	Stochastic Optimization	
	 Attention and Memory Models 	
	Open Problems	

Table 35. Recommended Textbook of deep learning course at (IAU)

Recommended book or source	Year of publication	Hyperlink
Deep Learning		https://www.microsoft.com/en-us/research/wp-
Methods and	2014	content/uploads/2016/02/DeepLearning-
Applications		NowPublishing-Vol7-SIG-039.pdf
Deep Learning		
(Adaptive		
Computation and	2016	https://www.amazon.com/Deep-Learning-Adaptive-
Machine Learning	2010	Computation-Machine/dp/0262035618
series) Illustrated		
Edition		
Hands-On Machine		Hands-On Machine Learning with Scikit-Learn and
Learning with		TensorFlow: Concepts, Tools, and Techniques to
Scikit-Learn and		Build Intelligent Systems 1st Edition
TensorFlow:		2017
Concepts, Tools,	2017	https://www.amazon.com/gp/product/1491962291
and Techniques to		/ref=as_li_tl?ie=UTF8&camp=1789&creative=9325&
Build Intelligent		creativeASIN=1491962291&linkCode=as2&tag=peta
Systems 1st		crunch-
Edition		20&linkId=8d26b4a376e2e4f6d50deec487694bce

4.11 BIG DATA

This course is being offered as part of the Master's degree in Computer Science at the Islamic Azad University (IAU). Some of chapters in the course include from the introduction Big Data, Architecture, Learn NoSQL Data Management and Integrating R and Hadoop and Understanding Hive in Detail. IAU uses 5 international below links as base or would suggest them in terms of the content and quality of the course:

- <u>https://online-learning.harv</u>
- ard.edu/subject/big-data
- https://www.udemy.com/topic/big-data/
- https://www.coursera.org/specializations/big-data
- https://www.coursera.org/specializations/cloudera-big-data-analysis-sql
- <u>https://www.coursera.org/specializations/gcp-data-machine-learning</u>

Details suggested course shows in Table 36 and recommended textbooks are shown in Table 37.

Topic(s)DetailsPre-requisitesOverview of Big DataThis includes topics such as history of big data, its elements, career related knowledge, advantages, disadvantages and similar topicsUsing Big Data in BusinessesThis unit should focus on the application perspective of Big Data covering topics such as using big data in marketing, analytics, retail, hospitality, consumer good, defense etc.Technologies for Handling Big DataBig Data is primarily characterized by Hadoop. This unit cover topics such as introduction to Hadoop, functioning of Hadoop, Clud computing (features, advantages, applications) etcUnderstanding Hadoop EcosystemThis includes learning about Hadoop and its ecosystem which includes HDFS, MapReduce, VARN, HBase, Hive, Pig, Sqoop, Zookeeper, Flume, Oozie etc.Understand the fundamental of MapReduce, vare, ingestion layer, source layer, source layer, isource layer, source layer, source layer, this includes an entire unit of HDFS, HBase and their respective ways to store and marage data along with their commands.Using Hadoop to store dataThis emphasizes on developing simple marage data lang with their commands.Learn to Process Data using Map ReduceThis unit sourd data base for data marage data lang with their commands.Learn Hadoop YARN ArchitechtureThis units introduces you with all	Table 36. Suggested topics for big data course at (IAU)			
Overview of Big Data This includes topics such as history of big data, its elements, career related knowledge, advantages, disadvantages and similar topics Using Big Data in Businesses This unit should focus on the application perspective of Big Data covering topics such as using big data in marketing, analytics, retail, hospitality, consumer good, defense etc. Technologies for Handling Big Data Big Data is primarily characterized by Hadoop. This unit cover topics such as Introduction to Hadoop, functioning of Hadoop, Cloud computing (features, advantages, applications) etc Understanding Hadoop Ecosystem This includes learning about Hadoop and its ecosystem which includes HDPS, MapReduce, YARN, HBase, Hive, Pig, Sqoop, Zokeeper, Flume, Oozle etc. Understanding Big Data This unit covers the big data stack i.e. data source layer, ingestion layer, source layer, security layer, visualization napproaches etc. Databases and Data Warehouses This unit covers the big data stack i.e. data source layer, security layer, visualization layer, visualization paproaches etc. Databases and Data Madoop to store data manage data along with their commands. This unit should cover and their related introductory knowledge Using Hadoop to store data manage data along with their commands. This emphasizes on developing simple mapreduce framework and the concepts applied to it. Testing and After the applications are developed, the next step is to test and debug it. This units introduces yn why why XAN, XAN, Advantages of YARN, working with YARN, YARN, Commands, log management etc. Exploring Hive necessary	Topic(s)	Details	Pre-requisites	
Using Big Data in BusinessesThis unit should focus on the application perspective of Big Data covering topics such as using big data in marketing, analytics, retail, hospitality, consumer good, defense etc.Technologies for Handing Big DataBig Data is primarily characterized by Hadoop. This unit cover topics such as Introduction to Hadoop, functioning of Hadoop, Cloud computing (features, advantages, applications) etcUnderstanding Hadoop EcosystemThis includes learning about Hadoop and its ecosystem which includes HDFS, MaReduce, YARN, HBase, Hive, Pig, Sqoop, Zookeeper, Flume, Oozie etc.Understand the fundamental of MapReduce and HBaseThis unit should cover the entire framework of MapReduce and uses of mapreduce.Data bases and Data WarehousesThis unit covers the big data stack i.e. data source layer, ingestion layer, visualization approaches etc.Databases and Data WarehousesThis includes an entire unit of HDFS, HBase and their related introductory knowledgeUsing Hadoop to store dataThis entishould cover all about databases, polygot persistence and their related introductory knowledgeUsing Map Reduce using Map ReduceThis entishould cover all about fuel to HDFS, HBase and their respective ways to store and manage data along with their commands.Learn to Process Data using Map ReduceAfter the applications are developed, the nerspective ways to store and mapreduce framework and the concepts applied to it.Testing and Debugging Map Reduce ApplicationsAfter the applications are developed, the necessary knowledgeLearn Hadoop YARN ArchitechtureAfter the applications would with all t	Overview of Big Data	This includes topics such as history of big data, its elements, career related knowledge, advantages, disadvantages and similar topics		
Big Data is primarily characterized by Hadoop. This unit cover topics such as Introduction to Hadoop, functioning of Hadoop, Cloud computing (features, advantages, applications) etcUnderstanding Hadoop EcosystemThis includes learning about Hadoop and its ecosystem which includes HDFS, MapReduce, YARN, HBase, Hive, Pig, Sqoop, Zookeeper, Flume, Oozie etc.understand the fundamental of 	Using Big Data in Businesses	This unit should focus on the application perspective of Big Data covering topics such as using big data in marketing, analytics, retail, hospitality, consumer good, defense etc.		
Understanding Hadoop EcosystemThis includes learning about Hadoop and its ecosystem which includes HDFS, MapReduce, YARN, HBase, Hive, Pig, Sqoop, Zookeeper, Flume, Oozie etc.understand the fundamental of MapReduce and HBaseThis unit should cover the entire framework of MapReduce and uses of mapreduce.Understanding Big Data Technology FoundationsThis unit covers the big data stack i.e. data source layer, ingestion layer, source layer, security layer, visualization layer, visualization approaches etc.Databases and Data WarehousesThis includes an entire unit of HDFS, HBase and their respective ways to store and 	Technologies for Handling Big Data	Big Data is primarily characterized by Hadoop. This unit cover topics such as Introduction to Hadoop, functioning of Hadoop, Cloud computing (features, advantages, applications) etc		
understand the fundamental ofThis unit should cover the entire framework of MapReduce and uses of mapreduce.MapReduce and HBaseof MapReduce and uses of mapreduce.Understanding Big Data Technology FoundationsThis unit covers the big data stack i.e. data source layer, ingestion layer, source layer, security layer, visualization layer, visualization approaches etc.Databases and Data WarehousesThis unit should cover all about databases, polygot persistence and their related introductory knowledgeUsing Hadoop to store dataThis enphasizes on developing simple mapreduce framework and the concepts applied to it.Testing and 	Understanding Hadoop Ecosystem	This includes learning about Hadoop and its ecosystem which includes HDFS, MapReduce, YARN, HBase, Hive, Pig, Sqoop, Zookeeper, Flume, Oozie etc.		
Understanding Big Data Technology FoundationsThis unit covers the big data stack i.e. data source layer, ingestion layer, source layer, security layer, visualization layer, visualization approaches etc.Databases and Data WarehousesThis unit should cover all about databases, polygot persistence and their related introductory knowledgeUsing Hadoop to store dataThis includes an entire unit of HDFS, HBase and their respective ways to store and manage data along with their commands.Learn to Process Data using Map ReduceThis emphasizes on developing simple 	understand the fundamental of MapReduce and HBase	This unit should cover the entire framework of MapReduce and uses of mapreduce.		
Databases and Data WarehousesThis unit should cover all about databases, polygot persistence and their related introductory knowledgeUsing Hadoop to store dataThis includes an entire unit of HDFS, HBase and their respective ways to store and manage data along with their commands.Learn to Process Data using Map ReduceThis emphasizes on developing simple mapreduce framework and the concepts applied to it.Testing and 	Understanding Big Data Technology Foundations	This unit covers the big data stack i.e. data source layer, ingestion layer, source layer, security layer, visualization layer, visualization approaches etc.		
Using Hadoop to store dataThis includes an entire unit of HDFS, HBase and their respective ways to store and manage data along with their commands.Learn to Process Data using Map ReduceThis emphasizes on developing simple mapreduce framework and the concepts applied to it.Testing and Debugging Map Reduce ApplicationsAfter the applications are developed, the next step is to test and debug it. This units imparts this knowledgeLearn Hadoop YARN ArchitechtureThis unit covers the background of YARN, advantages of YARN, working with YARN, YARN Commands, log management etc.Exploring HiveThis units introduces you with all the necessary knowledge of HiveExploring PigThis units units introduces you with all the necessary knowledge of Hive	Databases and Data Warehouses	This unit should cover all about databases, polygot persistence and their related introductory knowledge		
Learn to Process Data using Map ReduceThis emphasizes on developing simple mapreduce framework and the concepts applied to it.Testing and Debugging Map Reduce ApplicationsAfter the applications are developed, the next step is to test and debug it. This units imparts this knowledgeLearn Hadoop YARN ArchitechtureThis unit covers the background of YARN, advantages of YARN, working with YARN, 	Using Hadoop to store data	This includes an entire unit of HDFS, HBase and their respective ways to store and manage data along with their commands.		
Testing andAfter the applications are developed, the next step is to test and debug it. This units imparts this knowledgeReduce Applicationsimparts this knowledgeLearn Hadoop YARNThis unit covers the background of YARN, advantages of YARN, working with YARN, backward compatibility with YARN, YARN Commands, log management etc.Exploring HiveThis units introduces you with all the necessary knowledge of HiveExploring PigThis units introduces you with all the	Learn to Process Data using Map Reduce	This emphasizes on developing simple mapreduce framework and the concepts applied to it.		
Learn Hadoop YARN ArchitechtureThis unit covers the background of YARN, advantages of YARN, working with YARN, backward compatibility with YARN, YARN Commands, log management etc.Exploring HiveThis units introduces you with all the necessary knowledge of HiveExploring PigThis units introduces you with all the	Testing and Debugging Map Reduce Applications	After the applications are developed, the next step is to test and debug it. This units imparts this knowledge		
Exploring Hive This units introduces you with all the necessary knowledge of Hive Exploring Pig This units introduces you with all the	Learn Hadoop YARN Architechture	This unit covers the background of YARN, advantages of YARN, working with YARN, backward compatibility with YARN, YARN Commands, log management etc.		
Exploring Pig	Exploring Hive	This units introduces you with all the necessary knowledge of Hive		
necessary knowledge of PIG	Exploring Pig	This units introduces you with all the necessary knowledge of PIG		
Learn NoSQL Data This units covers all about NoSQL including Management document databases, relationships, graph	Learn NoSQL Data Management	This units covers all about NoSQL including document databases, relationships, graph		

	databases, schema less databases, CAP Theorem etc.	
Integrating R and Hadoop and Understanding Hive in Detail	This unit introduces you to Rhadoop,ways to do text mining and related knowledge	

Recommended book	Year of publication	Hyperlink
Big Data: a revolution that will transform how we live, work, and think	2014	https://www.amazon.com/Big-Data- Revolution-Transform- Think/dp/0544227751/ref=as_li_ss_tl?_encod ing=UTF8&me=&qid=&linkCode=sl1&tag=solu tionsre04- 20&linkId=0977f3dec969b2ea17c78ffbe3716a dd
Big Data: Principles and best practices of scalable realtime data systems	2015	https://www.amazon.de/gp/product/161729 0343/ref=x_gr_w_bb_sout?ie=UTF8&tag=x_gr _w_bb_de- 21&linkCode=ur2&camp=1638&creative=674 2
Designing Data- Intensive Applications; The Big Ideas Behind Reliable, Scalable, and Maintainable Systems	2017	https://www.amazon.com/Designing-Data- Intensive-Applications-Reliable- Maintainable/dp/1449373321/ref=as_li_ss_tl ?s=books&ie=UTF8&qid=1528990909&sr=1- 6&keywords=big+data&linkCode=sl1&tag=sol utionsre04- 20&linkId=0d973c63ebd303674c545a590371 4aa7

Table 37. Recommended Textbook of big data course at (IAU)

4.12 CLOUD AND FOG COMPUTING

This course is being offered as part of the Master's degree in Computer Science at the Islamic Azad University (IAU). Some of the topics that the course covers include the Principles of cloud computing systems, Virtual Machines, Cloud architectures and service platform design, Edge resource pooling and caching, Security and privacy in Fog and Consumer and wearable IoT, Connected cars IoT, Smart grids IoT, Healthcare IoT.

IAU uses 2 international below links as base or would suggest them in terms of the content and quality of the course:

- https://www.coursera.org/browse/information-technology/cloud-computing
- https://www.coursera.org/lecture/iot-wireless-cloud-computing/5-11-fog-computing-467Gr

Details suggested course shows in Table 38 and recommended textbooks are shown in Table 39.

Topic(s)	Details	Pre- requisites
Principles of cloud computing systems		
Data analytics, Internet of Things, and cognitive		
computing		

Table 38. Suggested topics of cloud and fog computing course at (IAU)

D1.1

Virtual Machines, Docker containers, and server clusters		
Cloud architectures and service platform design		
Cloud for mobile, IoT, social media, and mashup services		
Machine learning algorithms and model fitting		
Cloud programming with Hadoop and Spark		
Cloud performance, security, and data privacy		
Fog Computing, Edge Computing, Cloudlets	 Overview: From Cloud to Fog Overview: From IT to loT Principles of Edge/P2P networking 	
Applications of machine learning algorithms to cloud and fog/edge computing		
Intelligent machines and deep learning networks; TensorFlow, Keras, DeepMind, and graph analytics		
Smart data pricing for new network services		
Client side control and configuration		
Client-side measurement & Control Signaling		
Edge resource pooling and caching		
Security and privacy in Fog		
Consumer and wearable IoT Connected cars IoT Smart grids IoT Healthcare IoT		

Table 39. Recommended Textbook for cloud and fog computing course at (IAU)

Recommended book	Year of	Hyperlink
or source	publication	пуретнік
Cloud and Fog		
Computing in 5G		
Mobile Networks:	2017	https://www.amazon.com/Cloud-Computing-Mobile-
Emerging advances	2017	Networks-Telecommunications/dp/178561083X
and applications		
(Telecommunications)		
F og and Edge		https://www.wiley.com/en-
Computing: Principles	2019	us/Fog+and+Edge+Computing%3A+Principles+and+Paradigms-
and Paradigms		p-9781119524984
Fog/Edge Computing		
For Security, Privacy,	2021	https://www.springer.com/gp/book/9783030573270
and Applications		

4.13 SMART AGENTS AND SYSTEM ANALYSIS DESIGN

This course is being offered as part of the Master's degree in Computer Science at the Islamic Azad University (IAU). The course consists of chapters ranging from the Overview, Reasoning, Competitive models, Cooperative models, Open Issues.

IAU uses 2 international below links as base or would suggest them in terms of the content and quality of the course:

- https://people.ucalgary.ca/~far/Lectures/SENG697/index.html
- <u>https://www.lynda.com/Desire2Learn-tutorials/Automate-intelligent-agents/699342/789273-4.html</u>

Details suggested course shows in Table 40 and recommended textbooks are shown in Table 41.

Topic(s)	Details	Pre-requisites
Overview	definitions of agents, distributed AI and agents, intelligent agents, multi-agent systems, cooperation, agent application areas	
Reasoning	multi-agent epistemic logic, action logics, deliberation, BDI models	
Competitive models	strategies and equilibria, opponent modelling	
Cooperative models	bargaining and negotiation, resource allocation, inter-agent relationships	
Open Issues	development methodology, programming languages, standards	

Table 40. Suggested topics of smart agents and system analysis design course at (IAU)

Table 41. Recommended Textbook for smart agents and system analysis design course at (IAU)

Recommended book	Year of	Hyperlink
or source	publication	
Intelligent Systems		
Design and	2003	https://www.springer.com/gp/book/9783540404262
Applications		
Developing		
Intelligent Agent	2004	https://anlinalibrary.wiley.com/doi/back/10.1002/0470961222
Systems: A Practical	2004	https://onimenbrary.wiley.com/doi/book/10.1002/04/0861223
Guide		
Analysis and Design		
of Intelligent		
Systems Using Soft	2007	https://www.springer.com/gp/book/9783540724315
Computing		
Techniques		

4.14 SEMANTIC WEB

This course is being offered as part of the Master's degree in Computer Science at the Islamic Azad University (IAU). The course consists of chapters ranging from the Introduction to the Semantic Web and Ontologies, Ontology Languages for the Semantic Web, Ontology Engineering, Semantic web and Web 2.0, Applications of Semantic Web.

AU uses 2 international below links as base or would suggest them in terms of the content and quality of the course:

- https://open.hpi.de/courses/semanticweb2015
- https://www.emse.fr/~zimmermann/Teaching/SemWeb/

Details suggested course shows in Table 42 and recommended textbooks are shown in Table 43.

Topic(s)	Details	Pre- requisites
Introduction to the Semantic Web	The Semantic Web Activity of W3C: Overview of techniques and standards	•
Introduction to Ontologies		
Ontology Languages for the Semantic Web	 Resource Description Framework (RDF) Lightweight ontologies: RDF Schema Web Ontology Language (OWL) A query language for RDF: SPARQL 	
Ontology Engineering	 Metadata with RDF (Resource Description Framework) Metadata taxonomies with RDF Schema Transformation/Inference rules in XSLT, RuleML and RIF The W3C ontology language OWL Integrating these techniques for ontology/rule- based multi-agent systems 	
Semantic web and Web 2.0		
Applications of Semantic Web	 Semantic Modeling Semantic Web Applications Logic for the Semantic Web 	

Table 12	Suggostod	topics of	compositio woh	cource at (IALI)
1 avie 42.	JURGESTER	LUDICS OI	semantic web	COULSE AL LIAUT

Table 43. Recommended Textbook for semantic web course at (IAU)

Recommended book or source	Year of publication	Hyperlink
Introduction to the semantic web and semantic web services	2007	https://www.routledge.com/Introduction-to-the- Semantic-Web-and-Semantic-Web- Services/Yu/p/book/9780367388973
The Semantic Web		
Semantics for Data and	2008	https://www.springer.com/gp/book/9783540764519
Services on the Web		
Handbook of Research on		
Emerging Rule-Based	2009	http://www.igi-
Open Solutions and	2009	global.com/reference/details.asp?ID=34422
Approaches (2 Volumes)		
A Semantic Web Primer, third		http://mitpress.mit.edu/books/semantic-web-
edition, MIT Press	2012	primer-0

4.15 IOT PROGRAMMING (WITH RASPBERRY PI, BLUETOOTH, MOBILE DEVICES, AND SWIFT)

This course is being offered as part of the Master's degree in Computer Science at the Islamic Azad University (IAU). The course consists of chapters ranging from the Introduction to the Raspberry Pi, Model Development with Swift, IoT services with SwiftNIO, Using Bluetooth LE and GATT, Using GPIO SPI and UART.

IAU uses 4 international below links as base or would suggest them in terms of the content and quality of the course:

- https://www.coursera.org/specializations/iot
- https://www.edx.org/learn/iot-internet-of-things
- https://www.edx.org/course/iot-programming-and-big-data
- https://www.iexplotech.com/index.php/training-brochures/10-internet-of-things-iot

Details suggested course shows in Table 44 and recommended textbooks are shown in Table 45.

Table 44. Suggested topics of IoT	programming (with raspberry pi, bluetooth.	mobile devices, and swift) course at (IAU)

Topic(s)	Details	Pre-requisites
	Policies; OS options, Installing the base	
	OS with flow and cloud-init, securing the	
Introduction to the Raspberry Pi	device using SSH and LUKS, connecting	
	it to a network: Demo's of functionality:	
	the Docker container platform	
	Swift language essentials: Arrays,	
	Dictionaries, functions, Optionals,	
	Control Flow, Structs Enums and	
	Classes, Playgrounds. Elements of The	
	Swift Foundation classes, CocoaTouch	
	Foundation Framework, Simple	
	connections to the User Interface.	
Madal Davalanmant with Swift	Major emphasis will be on the Swift	
Model Development with Swift	type system (base types, tuples, enums,	
	structs, classes, function, and	
	protocols), generics, optionals and	
	closures. This will then be extended to	
	include the closure passing style of	
	functional programming as developed in	
	the map/reduce functions of the Swift	
	Standard Library.	
	Introduction to NIO. Servers, channels,	
LoT convices with SwiftNIO	event handling. Writing a service,	
Ior services with switting	automatically starting the service,	
	deploying services with Docker	
	Background and history of Bluetooth LE.	
	Introduction to BLE. Central and	
Using Bluetooth LE and GATT	Peripheral modes. Services,	
	characteristics and descriptors.	
	Managing device connections.	
	Advertising and beacons.	
	Introduction to hardware devices and	
Using GPIO SPI and UART	GPIO. Writing handlers for GPIO, SPI and	
	UART devices.	

Table 45. Recommended Textbook for IoT programming (with raspberry pi, bluetooth, mobile devices, and swift) course at (IAU)

Recommended book or source	Year of publication	Hyperlink
IOT (Internet of Things) Programming: A Simple and	2016	https://www.amazon.com/IOT-Internet-Things- Programming-Learning-ebook/dp/B01M3RKF1C

Fast Way of Learning IOT Kindle Edition		
IoT Programming Kindle Edition	2019	https://www.amazon.com/IoT-Programming-Ajit- Singh-ebook/dp/B07T6GNKFC
Programming the Internet of Things	2021	https://www.oreilly.com/library/view/programming- the-internet/9781492081401/

4.16 IOT SECURITY

This course is being offered as part of the Master's degree in Computer Science at the Islamic Azad University (IAU). The course consists of chapters ranging from the General Overview, Softwaredefined radios, Crypto foundations, Game theory foundations, Blockchains and Credential management for connected devices.

IAU uses 2 international below links as base or would suggest them in terms of the content and quality of the course:

- https://executive-education-online.mit.edu/presentations/lp/mit-internet-of-things-onlineshort-course/?ef_id=c:469587799158_d:c_n:g_ti:aud-733905065437:kwd-311189529984_p:_k:%2Biot%20%2Bcourse_m:b_a:117156466064&gclid=CjwKCAiA6aSABhA pEiwA6Cbm_wWvTVa92jfVOciCmBJkLWM21p93bVx5OT2HtDjv3n4M3jOa1dnjoRoC9lgQAvD _BwE&gclsrc=aw.ds
- <u>https://www.coursera.org/learn/iot-cyber-security</u>

Details suggested course shows in Table 46 and recommended textbooks are shown in Table 47.

Topic(s)	Details	Pre-requisites
	IoT and cyber-physical systems, IoT security	
Conoral Overview	(vulnerabilities, attacks, and countermeasures),	
General Overview	security engineering for IoT development, IoT security	
	lifecycle.	
	SDR platforms: HackRF and SDR/RTL, GNU Radio	
Software-defined radios	Companion (GRC), GRC building blocks: waveform	
Software-defined radios	generator, modulators, instrumentation, channel	
	models, filters, and Fourier analysis.	
	Block ciphers, message integrity, authenticated	
Crypto foundations	encryption, hash functions, Merkle trees, elliptic	
	curves, public-key crypto (PKI), signature algorithms	
Game theory	Mixed-strategy Nash equilibrium, repeated games,	
foundations	Bayesian games, coalitional games.	
	Crypto-currencies, Bitcoin P2P network, distributed	
Blockchains	consensus, incentives and proof-of-work, mining,	
DIOCKCHAILIS	scripts and smart contracts, wallets: hot and cold	
	storage, anonymity, altcoins.	
	Security credential management system (SCMS),	
Credential	Vehicle-	
management for	Based Security System (VBSS), PKI design, certification	
connected devices	provisioning, pseudonyms (privacy-by design),	
	misbehavior detection, and revocation.	

Table 46. Suggested topics of IoT Security course at (IAU)

 Table 47. Recommended Textbook for IoT Security course at (IAU)
 IAU

Recommended book or source	Year of publication	Hyperlink
Software receiver design: build		
your	2011	https://www.amazon.com/Software-Receiver-
own digital communication	2011	Design-Digital-Communication/dp/0521189446
system in five easy steps		
Bitcoin and Cryptocurrency		https://www.amazon.com/Bitcoin-Cryptocurrency-
Technologies: A Comprehensive	2016	Technologies-Comprehensive-
Introduction		Introduction/dp/0691171696
Practical Internet of Things	2016	https://www.amazon.com/Practical-Internet-
Security	2010	Things-Security-Russell/dp/178588963X

4.17 CELLULAR AND WIRELESS COMMUNICATIONS

This course is being offered as part of the Master's degree in Computer Science at the Islamic Azad University (IAU). The course consists of chapters ranging from the principles of digital wireless communications. Cellular architecture, radio access deployment, core network deployment, subscriber management, mobility and session management, security, Roaming, interconnection, Self-Optimizing Networks (SON), Voice over LTE (VoLT)), LTE-Advanced upgrades.

IAU uses 4 international below links as base or would suggest them in terms of the content and quality of the course:

- https://www.newcastle.edu.au/course/ELEC3550
- https://www.ucl.ac.uk/short-courses/search-courses/mobile-communications-systems
- https://www.coursera.org/lecture/wireless-communications/6-3-mobile-network-qxAtk
- <u>https://www.coursera.org/learn/wireless-communications</u>

Recommended textbooks are shown in Table 48.

Table 48. Recommended Textbook for cellular and wireless communications course at (IAU)		
nended book or source	Year of	Hyperlink

Recommended book or source	publication	Hyperlink
The Internet of Things From RFID to the Next-Generation Pervasive Networked Systems	2008	https://www.routledge.com/The-Internet- of-Things-From-RFID-to-the-Next- Generation-Pervasive-Networked/Yan- Zhang-Yang-Ning/p/book/9780367452704
An Introduction to LTE: LTE, LTE- Advanced, SAE, VoLTE and 4G Mobile Communications	2014	https://www.wiley.com/en- us/An+Introduction+to+LTE%3A+LTE%2C+ LTE+Advanced%2C+SAE%2C+VoLTE+and+ 4G+Mobile+Communications%2C+2nd+Ed ition-p-9781118818039
Wireless Cellular Communications: Principles, Designs and Applications	2020	https://www.amazon.com/Wireless- Cellular-Communications-Principles- Applications/dp/B08BVWT9ZD

4.18 INTRODUCTION TO DIGITAL SIGNAL PROCESSING

This course is being offered as part of the Master's degree in Computer Science at the Islamic Azad University (IAU). The course consists of chapters ranging from the Introduction to discrete linear systems, Discrete-Time Fourier Transform and Linear Time Invariant Systems, The Z transform,

Properties of digital filters, Fourier transforms, sampling, The discrete Fourier transform, The fast Fourier transform, Digital filter design.

IAU uses 3 international below links as base or would suggest them in terms of the content and quality of the course:

- https://www.coursera.org/learn/dsp1
- https://online.stanford.edu/courses/ee264-digital-signal-processing
- <u>https://ocw.mit.edu/resources/res-6-008-digital-signal-processing-spring-2011/</u>

Details suggested course shows in Table 49 and Recommended textbooks are shown in Table 50.

Table 49. Suggested topics of intro	duction to digital signal processing course at (IAU)	
		_

Topic(s)	Details	Pre-requisites
Introduction to Discrete Linear Systems	 Discrete time signals. Special sequences. Shift invariance. Stability and causality. Impulse response. Difference equations 	
Discrete-Time Fourier Transform and Linear Time Invariant Systems	 Transform definitions. Theorems Frequency response of linear time invariant systems. Phase and group delays Matlab computations. 	
The Z transform	 Z-transforms by summation of left, right, and two-sided sequences. Regions of convergence and Z-transform properties Inverse Z-transform 	
Properties of digital filters	 Averaging filter. Recursive smoother First-order notch filter. Secondorder unity gain resonator. All-pass filters. Comb filters Equalization filters Group delay, linear phase, all-pass, minimum phase 	
Fourier transforms, sampling	 Fourier transform review Sampling continuous-time signals: the sampling theorem Aliasing Re-sampling digital signals. 	
The discrete Fourier transform	 A/D conversion and quantization D/A conversion Polyphase decomposition Polyphase DFT filterbanks Bandpass sampling 	
The fast Fourier transform	 Decimation in time FFT 	

	Decimation in frequency FFT
Digital filter design	 Finite impulse response (FIR) filters Infinite impulse response (IIR) filters Structures and properties of FIR and IIR filters and review

Table 50. Recommended Textbook for introduction to digital signal processing course at (IAU)

Recommended book or source	Year of publication	Hyperlink
Understanding Digital Signal	2010	https://www.amazon.com/Understanding-Digital-
Processing 3rd Edition	2010	Signal-Processing-3rd/dp/0137027419
Digital Signal Processing 3rd	2019	https://www.elsevier.com/books/digital-signal-
Applications	2018	processing/tan/978-0-12-815071-9

4.19 FUNDAMENTALS OF WIRELESS NETWORKS

This course is being offered as part of the Bachelor's degree in Computer engineering/software, major computer networks at the Shahid Chamran University of Ahvaz (SCU). Some chapters of this course consists ranging from the Concepts, Protocol, Architecture, Network generations, Mobility concepts and management in infrastructure-based and non-infrastructures wireless networks and, Mobility concepts in 3G and 4G, MobileIP standard.

The SCU has enough experience in teaching of this course and can provide enough materials for this course to the consortium. SCU suggest topic of "MAC protocols in IoT devices, Routing protocols in IoT devices and Application programs in IoT devices" to be taught in the frame of this course to make your listed subjects in this course more complete and practical.

SCU uses courses 1 national and 3 international below links as base or would suggest them in terms of the content and quality of the course:

National

 http://eceold.ut.ac.ir/change_password/abet/fa-Introduction%20to%20Wireless%20Networks.pdf

International

- CSE574S: Wireless and Mobile Networking (Fall 2018) (wustl.edu)
- http://www.monarch.cs.rice.edu/comp524/
- https://web.stanford.edu/class/cs444n/

The practical part of the course is offered in the form of teaching assistantship. Further details and breakdown of current topics in this course are given in Table 51. Recommended textbooks are shown in Table 52. Table 53 shows subjects and/or courses that are not in this course, but can make IoT graduates more competent and competitive to the market and industry.

Table 51. Weekly plan and details of all topics and subjects of fundamentals of wireless networks course at (SCU)

Week #	Theory/Practice	Topics	Details	Pre-requisites	Comments
Week 1	Theory:	Concepts	Hosts, links, base	Computer	

	Intro	stations		networks (undergrad course)
Week 2	Theory : Intro	Concepts Infrastructure-based and non- infrastructure, fading, multipath,		
Week 3	Theory: Wireless coding protocols	CDMA, OFDMA, WLAN	Definitions, coding math & technology fundamentals	
Week 4	Theory : MAC protocols	Random access protocols, partitioning and taking turns ones	TDMA, FDMA, ALOHA, S-ALOHA, CSMA, CSMA/CD, token ring, polling	Computer networks (undergrad course)
Week 5	Theory: WLAN architecture and standards	IEEE 802.11 derivatives	Micro standards: a, b, g, n, ac and their characteristics, WiFi association topics	
Week 6	Theory : WiFi MAC	802.11 MAC protocol	CSMA/CA, RTS/CTS extension, frame exchange	
Week 7	Theory: Advanced features of 802.11 MAC protocol	802.11 frame and features	QoS in 802.11, energy saving, rate adaptation, frame format, mobility in subnet	
Week 8	Theory : Bluetooth	Bluetooth architecture and 802.15.1	Phy. Layer: FHSS, frequencies, piconets, master-slave, application profiles	
Week 9	Theory : Zigbee	IEEE 802.14.5 and IoT architecture	IoT use cases, frame structure, protocol stack	
Week 10	Theory : Cellular networks	Network generations	GSM, 2G, 3G, 4G / LTE and 5G architectures,	
Week 11	Theory : Mobility management	Mobility concepts and management in infrastructure- based and non- infrastructures wireless networks	Home network, home agent, foreign network, foreign agent, Care-Of- Address, direct and indirect addressin methods	
Week 12	Theory: Mobility in cellular networks and MobileIP standard	Mobility concepts in 3G and 4G, MobileIP standard	HLR, VLR, MSRN, call routing and handoff, RFC 5944, agent discovery, agent solicitation and registration	

Week	Practice:		
13	Project		

Table 52. Recommended Textbook of all topics and subjects of fundamentals of wireless networks course at (SCU)

Title of the Book or reference	Publication Year	Link to the reference
Wireless Communications	2009 (2nd	https://www.amazon.com/Wireless-
Networks	Edition)	Communication-Networks-2nd-Ed/dp/8120330196
Computer Networks (chapters and sections related to 802.11, 802.15)	2010 (5 th edition) 2020 (6 th edition if available)	https://www.amazon.com/Computer-Networks- Tanenbaum-International- Economy/dp/9332518742 https://www.pearson.com/us/higher- education/program/Tanenbaum-Computer- Networks-RENTAL-EDITION-6th- Edition/PGM2899476.html
Computer Networking: A Top-Down Approach: Chapter 7	2017 (7 th edition) or 2020 (8 th edition if available)	https://www.amazon.com/Computer-Networking- Top-Down-Approach-7th/dp/0133594149 https://gaia.cs.umass.edu/kurose_ross/eighth.htm

Table 53. Recommended relevant courses to all topics and subjects of fundamentals of wireless networks course at (SCU)

Suggested Topic	Required Sessions	Pre-requisites
Zigbee protocol, 6LowPAN, RPL	3-4	Fundamentals of wireless networks
WAN protocols for IoT	1-2	Fundamentals of wireless networks
Industrial and Medical IoT	3-4	Fundamentals of wireless networks

4.20 REAL-TIME AND EMBEDDED SYSTEMS

This course is being offered as part of the Bachelor's degree in Computer engineering/software, major computer networks at the Shahid Chamran University of Ahvaz (SCU). Some chapters of this course consists ranging from the Concepts, Time and behavioral model, Programming languages, Performance analysis & prediction, Energy, Security, Dependability, Introduction to Architectures & Standards and Introduction to Architectures & Standards.

The SCU has enough experience in teaching of this course and can provide enough materials for this course to the consortium. SCU suggest topic of "Performance analysis of IoT real time systems, Real time IoT practical examples, Programming exercises" to be taught in the frame of this course to make your listed subjects in this course more complete and practical.

SCU uses courses 1 national and 3 international below links as base or would suggest them in terms of the content and quality of the course:

National

 http://eceold.ut.ac.ir/change_password/abet/fa-Introduction%20to%20Wireless%20Networks.pdf

International

- https://www.ucsc-extension.edu/courses/real-time-embedded-systems-programmingintroduction/
- https://edu.epfl.ch/coursebook/en/real-time-embedded-systems-CS-476
- https://www.adelaide.edu.au/course-outlines/110290/1/sem-2/

The practical part of the course is offered in the form of teaching assistantship. Further details and breakdown of current topics in this course are given in Table 54. Recommended textbooks are shown in Table 55. Table 56 shows subjects and/or courses that are not in this course, but can make IoT graduates more competent and competitive to the market and industry.

Week #	Theory/Practice	Topics	Details	Pre-requisites	Comments
Week 1	Theory: Basic concepts of RT sys.	Concepts	RT sys., Embedded sys., events and RT entities, hard & soft RT, Processing load		
Week 2	Theory: RT sys. requirements	Time and behavioral model	Temporal, dependability and data requirements, Human/Machine interface	Signals and Systems	
Week 3	Theory: Hardware of Embedded RT systems	Sensors and actuators	Sensors, data and noise control, quantization, actuators,	Microprocessors and Assembly language	
Week 4	Theory: Hardware of Embedded RT systems	Processors	ISA, Microcontrollers, SOC, DSP, GPU, FPGA, NP	Microprocessors and Assembly language	
Week 5	Theory: Hardware of Embedded RT systems	Memory & IO	Memory models, memory map, hierarchy & cache, IO standards, interrupts, DMA,	Microprocessors and Assembly language	
Week 6	Theory: Realtime Operating systems	Concepts	RT OS models	Operating systems	
Week 7	Theory: Realtime Operating systems	Scheduling,	Scheduling algorithms (RR, CC, RM, EDFA),	Operating systems	
Week 8	Theory: Realtime Operating systems	OS Services	System services, concurrency, priority inheritance and ceiling protocols, RT OS choice	Operating systems	
Week 9	Theory: Design and programming of RT sys.	Programming languages	Language popularity and fitness, features for RT sys., Various languages and their use cases in RT sys., Source code optimization	Fundamentals of programming or advanced programming	
Week 10	Theory: Performance of RT sys.	Performance analysis & prediction	Concepts, execution time estimation, analysis of RT sys. timing, IO		

Table 54. Weekly	plan and details of all to	pics and subjects of real-time	and embedded systems Co	OURSE AT (SCU)

			performance		
Week 11	Theory: Other topics	Energy, Security, Dependability	Power/energy efficiency, monitoring and optimization, dependability, security and fault tolerance		
Week 12	Theory: Internet of Things	Concepts	Introduction, applications, WSNs, IoT / WoT	Computer Networks	
Week 13	Theory: Internet of Things	Introduction to Architectures & Standards	Layers, network & transport standards, application standards	Computer Networks	
	Practice: Project		Experimenting with a sensor-based Embedded system		

Table 55. Recommended Textbook of real-time and embedded systems course at (SCU)

Title of the Book or reference	Publication Year	Link to the reference
Real-Time Systems, Design Principles for Distributed Embedded Applications	2011 (2 nd edition)	https://www.springer.com/gp/book/9781441982360
Real-Time Systems Design and Analysis, Tools for the Practitioner	2012 (4th edition)	https://www.wiley.com/en- by/Real+Time+Systems+Design+and+Analysis:+Tools +for+the+Practitioner,+4th+Edition-p- 9780470768648
Introduction to Embedded Systems -A Cyber-Physical Systems Approach	2017 (2 nd edition)	https://ptolemy.berkeley.edu/books/leeseshia/
Internet of Things: Architectures, protocols and standards	2019 (1st edition)	https://www.amazon.com/Internet-Things- Architectures-Protocols-Standards/dp/1119359678

Table 56. Recommended relevant courses to real-time and embedded systems course at (SCU)

Suggested Topic	Required Sessions	Pre-requisites
Practical exercises with	1 0	
hardware	1-2	

4.21 DATA COMMUNICATIONS

This course is being offered as part of the Bachelor's degree in Computer engineering/software, major computer networks at the Shahid Chamran University of Ahvaz (SCU). Some chapters of this course consists ranging from the Recall: Signal, noise, Fourier series, dB unit, Analog and digital transmission, signal fading, Shanon capacity, Modulation techniques (digital), Constellation diagram, bit error rate in AWGN channels, Rayleigh fading, Synchronous and Asynchronous transmission, Fading types, Multiplexing techniques: TDM, FDM, ADSL, xDSL and Packet and circuit switching.

The SCU has enough experience in teaching of this course and can provide enough materials for this course to the consortium. SCU suggest topic of "Physical layer of IoT devices" to be taught in the frame of this course to make your listed subjects in this course more complete and practical. SCU uses courses 2 national and 3 international below links as base or would suggest them in terms of the content and quality of the course:

National

- http://college.birjand.ac.ir/product/%D8%A2%D9%85%D9%88%D8%B2%D8%B4-%D8%AF%D8%B1%D8%B3-%D8%A7%D9%86%D8%AA%D9%82%D8%A7%D9%84-%D8%AF%D8%A7%D9%87-%D9%87%D8%A7-%D8%A8%D9%87-%D9%85%D8%B1%D8%A7%D9%87-%D8%AD%D9%84-%D9%85%D8%B3%D8%A7/
- http://eceold.ut.ac.ir/change_password/abet/en-Data%20Transmission.pdf

International

- https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-263j-data-communication-networks-fall-2002/
- https://engineering.purdue.edu/online/courses/data-communication-computer-networks
- https://www.ntnu.edu/studies/courses/ELE3343#tab=omEmnet

The practical part of the course is offered in the form of teaching assistantship. Further details and breakdown of current topics in this course are given in Table 57. Recommended textbooks are shown in Table 58. Table 59 shows subjects and/or courses that are not in this course, but can make IoT graduates more competent and competitive to the market and industry.

Week #	Theory/Practice	Macro Topics	Micro Topics	Pre-requisites	Comments
Week 1	Recall: Signal, noise, Fourier series, dB unit, 	•		Signals and systems	
Week 2	Analog and digital transmission, signal fading, Shanon capacity			Signals and systems	
Week 3	Communication media (Coax, TP, Fiber and wireless)			Computer networks	
Week 4	Modulation techniques (digital)			Signals and systems	
Week 5	Constellation diagram, bit error rate in AWGN channels, Rayleigh fading				
Week 6	Synchronous and Asynchronous transmission				
Week 7	Error types, error detection and correction				
Week 8	Spread spectrum techniques, OFDM				

Table 57. Weekly plan and details of all topics and subjects of data communications course at (SCU)

Week 9	Fading types		
Week 10	Multiplexing techniques: TDM, FDM, ADSL, xDSL		
Week 11	Packet and circuit switching		
Week 12	Project		
Week 13	Project		

Table 58. Recommended Textbook of all topics and subjects of data communications course at (SCU)

Title of the Book or reference	Publication Year	Link to the reference
Data and computer communications	2013 (10 th edition)	https://www.amazon.com/Computer- Communications-William-Stallings-Books-ebook- dp- B00GGYGIYG/dp/B00GGYGIYG/ref=mt_other?_en coding=UTF8&me=&qid=

Table 59. Recommended relevant courses to all topics and subjects of data communications course at (SCU)

Suggested Topic	Required Sessions	Pre-requisites
Modulation techniques in IoT	1-2	Data communication
Coding techniques in IoT	1-2	Data communication

4.22 ADVANCED COMPUTER NETWORKS

This course is being offered in the master's degree in Computer engineering/Artificial intelligence and systems architectures at the Shahid Chamran University of Ahvaz (SCU) and USB. The course consists of 6 chapters ranging from the General concepts of computer networks and application layer, reliable transfer, control mechanism, over view and its data plane, Intra-AS and Inter-AS routing, OSPF and MPLS and data center networking.

The SCU has enough experience in teaching of this course and can provide enough materials for this course to the consortium. SCU suggest topic of "Advanced topics: BBR, QUIC, HTTTP/2, HTTP/3 and Middleboxes, NETCONF, YANG" to be taught in the frame of this course to make your listed subjects in this course more complete and practical.

SCU uses courses 2 national and 3 international below links as base or would suggest them in terms of the content and quality of the course:

National

- http://ocw.um.ac.ir/streams/course/view/110.html
- https://hashemi.iut.ac.ir/fa/%D8%B4%D8%A8%DA%A9%D9%87-%D9%87%D8%A7%DB%8C-%DA%A9%D8%A7%D9%85%D9%BE%DB%8C%D9%88%D8%AA%D8%B1%DB%8C-%D9%BE%DB%8C%D8%B4%D8%B1%D9%81%D8%AA%D9%87

International

- <u>https://www.southampton.ac.uk/courses/modules/comp3210.page</u>
- https://web.eecs.umich.edu/~zmao/eecs589/
- https://www.cs.princeton.edu/courses/archive/fall18/cos561/

The practical part of the course is offered in the form of teaching assistantship. Further details and breakdown of current topics in this course are given in Table 60. Table 61 shows subjects and/or courses that are not in this course, but can make IoT graduates more competent and competitive to the market and industry.

Week #	Theory/Practice	Macro Topics	Micro Topics	Pre-requisites	Comments
Week 1	Theory: Intro. to computer networks	Recall: chapter 1, chapter 2	General concepts of computer networks and application layer	Computer networks (undergrad course)	
Week 2	Theory: Intro. to computer networks, Recall to TCP	Chapter 3, TCP reliable transfer	TCP overview, ack no. priciples of congestion control	Computer networks (undergrad course)	
Week 3	Theory : Congestion control	TCP congestion control mechanism	AIMD algorithm, slow start, congestion avoidance, fast recovery, TCP fairness, TCP over fat links, new versions of TCP and congestion control mechanisms		
Week 4	Theory: SDN concept, IPv6	Chapter 4: SDN over view and its data plane	Definition of data and control plane, router scheduling policies, IPv6 motivation, header format, tunneling	Computer networks (undergrad course)	
Week 5	Theory: SDN data plane (cont'd)	Generalized forwarding, flow table, OFv1.0	Generalized forwarding, match+action concept, Open Flow data abstraction, example scenarios		
Week 6	Theory: Routing in Internet	Chapter 5: Intra-AS and Inter-AS routing, OSPF	Recall: LS and DV routing algorithms, Intra and Inter-AS concepts, OSPF overview, OSPF advanced features,	Computer networks (undergrad course)	
Week 7	Theory: Routing in Internet (cont'd)	BGP, hot potato routing, IP- Anycast	eBGP, iBGP, path attributes and BGP routes, BGP messages, hot potato routing, BGP route selection algorithm, IP-Anycast, policies in BGP, policy advertisement between ISPs		

Table 60 Weekly	nlan and	details of all t	nics and sub	iects of advanced	computer netwo	rks Course at (SCH)
Table 00. Weeki	y pian anu	uetans or an t	spics and sub	jects of advanced	computer netwo	iks Course at (300)

	ſ			
Week 8	Theory: SDN control plane	Traffic engineering and SDN approach, ODL and ONOS controllers	Network operating system, northbound and southbound interfaces, network control application, RESTful API, Open Flow messages, OF table entries, overview of ODL and ONOS examples	
Week 9	Theory: Control protocols in the Internet	ICMP, SNMP	ICMP messages, Traceroute and Ping, ICMP messages in IPv6, SNMP concepts for network management, MIB, agent, managing entity, req/res and trap modes, SNMP message types and message formats	
Week 10	Theory: Link layer virtualization	Chapter 6: MPLS and data center networking	MPLS header format, MPLS capable routers, signaling and forwarding tables, datacenter networking concepts: TOR switch, Tier-1 and 2 switches and load balancer, hierarchical and mesh configurations, container data centers	
Week 11	Theory: DNS, P2P networks	Chapter 2: DNS and P2P networks	DNS concepts: root, TLD and authoritative servers, local DNS servers, iterated and recursive query, caching and DMS records, message formats, attacking DNS, P2P self- scalability analysis and BitTorrent protocol overview	
Week 12	Theory: CDN	Chapter 2: Video streaming and Content Distribution	Multimedia definition and video concept: temporal and spatial coding, DASH protocol, mega	

		Networks	server, enter deep- bring home approach, CDN structure, OTT challenges, case study: Netflix	
Week 13	Practice: Project			

Table 61. Recommended relevant courses to all topics and subjects of advanced computer networks Course at (SCU)

Suggested Topic	Required Sessions	Pre-requisites
SDN concept in IoT	1-2	Computer networks, fundamentals of wireless networks
Management of IoT devices	1-2	Computer networks, fundamentals of wireless networks

4.23 NETWORK SECURITY

This course is being offered as part of the Bachelor's degree in Computer engineering/software, major computer networks at the Shahid Chamran University of Ahvaz (SCU). The course consists of some chapters ranging from the concepts, Symmetric cryptography, Message Authentication, TLS & SSH, IPSec and Malicious Software.

The SCU has enough experience in teaching of this course and can provide enough materials for this course to the consortium. SCU suggest topic of "Practical projects on cryptography, Blockchain and Security for IoT devices" to be taught in the frame of this course to make your listed subjects in this course more complete and practical.

SCU uses courses 2 national and 3 international below links as base or would suggest them in terms of the content and quality of the course:

National

- https://ece.ut.ac.ir/network
- https://www.sbu.ac.ir/Cols/CSE/Pages/%DA%AF%D8%B1%D9%88%D9%87-%D8%B4%D8%A8%DA%A9%D9%87-%D9%87%D8%A7%DB%8C-%DA%A9%D8%A7%D9%85%D9%BE%DB%8C%D9%88%D8%AA%D8%B1%DB%8C-%D9%88-%D8%A7%D9%85%D9%86%DB%8C%D8%AA.aspx

International

- https://online.stanford.edu/courses/xacs255-network-security
- http://courses.csail.mit.edu/6.857/2020/
- https://engineering.purdue.edu/kak/compsec/

The practical part of the course is offered in the form of teaching assistantship. Further details and breakdown of current topics in this course are given in Table 62. Recommended textbooks are shown in Table 63. Table 64 shows subjects and/or courses that are not in this course, but can make IoT graduates more competent and competitive to the market and industry.

Week #	Theory/Practice	Topics	Details	Pre- requisites	Comments
Week 1	Theory: Security concepts	Concepts	OSI security architecture, Security attacks, services, and	Computer Networks	

Table 62. Weekly plan and details of all topics and subjects of network security course at (SCU)

			mechanisms, Security models	
Week 2	Theory: Cryptography	Symmetric cryptography	Principles, Block ciphers (Feistel & DES), RNG	Computer Networks, Discrete math
Week 3	Theory: Cryptography	Symmetric cryptography	Advanced Encryption Standard	Computer Networks, Discrete math
Week 4	Theory / Practice: Cryptography	Symmetric cryptography	Stream ciphers, Block cipher modes of operation A number of crypto- related lab projects	Computer Networks, Discrete math
Week 5	Theory: Cryptography	Message Authentication	Hashing and message authentication codes	Computer Networks, Discrete math
Week 6	Theory: Cryptography	Public key cryptography	Public key principles and algorithms (RSA, DH), Digital signatures	Computer Networks, Discrete math
Week 7	Theory: Key & Identity management	Key distribution & authentication	Kerberos 4 & 5 architecture and messages,	Computer Networks, Discrete math
Week 8	Theory: Key & Identity management	Key distribution & authentication	Public key certificates, X509 standard, PKIX, FIM	Computer Networks, Discrete math
Week 9	Theory / Practice: Transport layer security	TLS & SSH	Web security, TLS, HTTPS, SSH with protocol details A number of port scan / nmap practices	Computer Networks
Week 10	Theory: Wireless security	Wireless device and network security	Security of mobile devices, IEEE 802.11 (recall), 802.11i WiFi security	Computer Networks, Wireless networks
Week 11	Theory: Email security	Secure mail architecture and protocols	Internet mail architecture (recall), Email formats (recall), Email threats and security, PGP, S/MIME	Computer Networks
Week 12	Theory: IP Security	IPSec	IPSec overview, security policies and associations, IPSec architecture and data flow, ESP and AH, IKE,	Computer Networks

Week 13	Theory: System security	Malicious Software	Types of malware, APT, Propagation and replication, Payload threats, malware countermeasures, DDoS	Computer Networks	
	Practice: Project				

Table 63. Recommended Textbook of network security course at (SCU)

Title of the Book or reference	Publication Year	Link to the reference
Network Security Essentials, Applications and Standards	2016 (6 th edition)	https://www.amazon.com/Network-Security- Essentials-Applications- Standards/dp/013452733X
Cryptography and Network Security, Principles and Practice	2017 (7 th edition)	https://www.amazon.com/Cryptography- Network-Security-Principles- Practice/dp/0134444280

Table 64. Recommended relevant courses to network security course at (SCU)

Suggested Topic	Required Sessions	Pre-requisites
Security of IoT devices	2-3	Network security
Security of mobile devices	2-3	Network security
IDS, artificial intelligence in security	2-3	Network security

4.24 FAULT TOLERANT SYSTEMS

This course is being offered in the master's degree in Computer engineering/ systems architectures at the Shahid Chamran University of Ahvaz (SCU). The course consists of some chapters ranging from the Introduction, Dependability, Fundamental Notions, Parity Codes, Software Versus Hardware, Single-Version Techniques and Multi-Version Techniques, Software Testing.

The SCU has enough experience in teaching of this course and can provide enough materials for this course to the consortium. SCU suggest topic of "Practical projects on fault tolerant systems" to be taught in the frame of this course to make your listed subjects in this course more complete and practical.

SCU uses courses 2 national and 3 international below links as base or would suggest them in terms of the content and quality of the course:

National

- <u>https://sbu.ac.ir/Cols/CSE/Documents/News/%D8%B7%D8%B1%D8%A7%D8%AD%DB%8C%</u>
 <u>20%D8%B3%DB%8C%D8%B3%D8%AA%D9%85%D9%87%D8%A7%D9%8A%20%D8%AA%D8%</u>
 <u>AD%D9%85%D9%84%20%D9%BE%D8%B0%DB%8C%D8%B1%20%D8%A7%D8%B4%DA%A9%</u>
 <u>D8%A7%D9%84.pdf</u>
- http://hardware.ce.sharif.edu/wp-content/uploads/2010/07/Grad-Persian-Binder.pdf

International

- http://www2.cs.uidaho.edu/~krings/CS449/
- http://www.staff.city.ac.uk/~sm377/FTcourse.html
- https://www.kth.se/student/kurser/kurs/ID2218?l=en

The practical part of the course is offered in the form of teaching assistantship. Further details and breakdown of current topics in this course are given in Table 65. Recommended textbooks are shown in Table 66. Table 67 shows subjects and/or courses that are not in this course, but can make IoT graduates more competent and competitive to the market and industry.

Week #	Theory/Practice	Topics	Details	Pre-requisites	Comments
Week 1	Intro to fault tolerance	Introduction	Definition, Redundancy, Applications	general mathematics	
Week 2	Fundamentals of Dependability	Dependability (Attributes, Impairments, Means)	Reliability, Availability, Safety, Faults, Errors, and Failures, Origins of Faults, Common-Mode Faults, Hardware Faults, Hardware Faults, Software Faults, Fault Tolerance, Fault Prevention, Fault Removal, Fault Forecasting	general mathematics	
Week 3	Dependability Evaluation Techniques(1)	Basics of Probability Theory, Common Measures of Dependability	Failure Rate, Mean Time to Failure, Mean Time to Repair, Mean Time Between Failures, Fault Coverage	Statistics and Probability	
Week 4	Dependability Evaluation Techniques(2)	Dependability Modeling, Dependability Evaluation	Reliability Block Diagrams, Fault Trees, Reliability Graphs, Markov Processes, Reliability Evaluation Using Reliability Block Diagrams, Dependability Evaluation Using Markov Processes	Statistics and Probability	
Week 5	Hardware Redundancy(1)	Redundancy Allocation, Passive Redundancy	Triple Modular Redundancy, N- Modular Redundancy	Computer architecture	
Week 6	Hardware Redundancy(2)	Active Redundancv.	Duplication with Comparison,	Data communications	

Tahla 65 Waakly nlan	and datails of all tonics	and subjects of fault toler	ant systems course at (SCII)
Table 05. Weekly plan	and details of an topics	and subjects of fault toler	and systems course at (SCO)

		Hybrid Redundancy	Standby Redundancy, Pair-And-A-Spare, Self-Purging Redundancy, N- Modular Redundancy with Spares		
Week 7	Information Redundancy(1)	Fundamental Notions, Parity Codes	Code, Encoding, Information Rate, Decoding, Hamming Distance, Code Distance, Horizontal and Vertical Parity Codes	Computer networks	
Week 8	Information Redundancy(2)	Linear Codes,	Generator Matrix, Parity Check Matrix, Construction of Linear Codes, Hamming Codes, Lexicographic Parity Check Matrix, Applications of Hamming Codes, Extended Hamming Codes	Computer networks	
Week 9	Information Redundancy(3)	Cyclic Codes	Polynomial Manipulation, Generator Polynomial, Parity Check Polynomial, Syndrome Polynomial, Implementation of Encoding and Decoding, Separable Cyclic Codes, Cyclic Redundancy Check Codes, Reed-Solomon Codes	Computer networks	
Week 10	Information Redundancy(4)	Unordered Codes, Arithmetic Codes	M-of-N Codes, Berger Codes, AN Codes, Residue Codes	Computer networks	

Week 11	Time Redundancy	Time Redundancy, Permanent Faults	Time Redundancy, Alternating Logic, Recomputing with Modified Operands	Computer architecture	
Week 12	Software Redundancy(1)	Software Versus Hardware, Single-Version Techniques	Software Versus Hardware, Fault Detection Techniques, Fault Containment Techniques	Computer architecture	
Week 13	Software Redundancy(2)	Multi-Version Techniques, Software Testing	Recovery Blocks, N-Version Programming, N Self-Checking Programming, Importance of Design Diversity, Statement Coverage, Branch Coverage	Computer architecture	

 Table 66. Recommended Textbook of fault tolerant systems course at (SCU)
 Image: Comparison of the systems course at (SCU)

Title of the Book or reference	Publication Year	Link to the reference
Probability and Statistics with Reliability, Queuing and Computer Science Application	1992	https://www.amazon.com/Probability-Statistics- Reliability-Queueing-Applications/dp/0471333417
Fault-Tolerant Computer System Design	1996	https://www.amazon.com/Fault-Tolerant-Computer- System-Design-Pradhan/dp/0130578878
Design and Analysis of Fault Tolerant Digital Systems	1988	https://dl.acm.org/doi/book/10.5555/61654
Fault Tolerant Design: An Introduction	2008	https://www.springer.com/gp/book/9781461421122

Table 67. Recommended relevant courses to fault tolerant systems course at (SCU)

Suggested Topic	Required Sessions	Pre-requisites
Fault tolerant in IoT devices	2-3	Fault tolerant systems
Fault tolerant in mobile devices	2-3	Fault tolerant systems
Performance analysis of FT in IoT	2-3	Fault tolerant systems

4.25 DISTRIBUTED SYSTEMS

This course is being offered as part of the Master's degree in Computer engineering/Artificial intelligence and systems architectures at the Shahid Chamran University of Ahvaz (SCU) and USI. The course consists of 5 chapters ranging from the Concept and Types of DS: computing and information

systems, architectural styles and middleware, Threads and processes, multi-threading and multiprocessing, Introduction and RPC, basics of coordination, physical and logical clock and logical clocks (cont'd), applications of synchronization.

The SCU has enough experience in teaching of this course and can provide enough materials for this course to the consortium. SCU suggest topic of "Programming projects for different sections" to be taught in the frame of this course to make your listed subjects in this course more complete and practical.

SCU uses courses 1 national and 3 international below links as base or would suggest them in terms of the content and quality of the course:

National

• https://ce.guilan.ac.ir/images/other/soft/chapter1-942.pdf

International

- https://online.stanford.edu/courses/cs244b-distributed-systems
- https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-033-computersystem-engineering-spring-2018/week-8/
- https://www.cs.columbia.edu/~du/ds/

The practical part of the course is offered in the form of teaching assistantship. Further details and breakdown of current topics in this course are given in Table 68. Recommended textbooks are shown in Table 69. Table 70 shows subjects and/or courses that are not in this course, but can make IoT graduates more competent and competitive to the market and industry.

Week #	Theory/Pr actice	Macro Topics	Micro Topics	Pre- requisite s	Commen ts
Week 1	Theory: Intro. to distributed systems	Chapter 1: concepts	Characteristics of DS, middleware definition, transparency types and examples, scalability types and scaling techniques and examples, asynchronous communication, distribution, replication	Compute r networks (undergr ad course)	
Week 2	Theory: Intro. to distributed systems	Chapter 1: Types of DS: computing and information systems	Distributed computing systems: cluster computing, grid and cloud computing overview, Distributed information systems: Enterprise application integration	Compute r networks (undergr ad course)	
Week 3	Theory: Intro. to distributed systems	Chapter 1: Types of DS (cont'd): information and pervasive systems	Transaction processing, Ubiquitous systems, mobile computing systems, sensor networks (overview)	Compute r networks (undergr ad course)	
Week 4	Theory: Architectu res of distributed systems	Chapter 2: architectural styles and middleware	Layered, object-based, resource- centered and event-based architectures, service-oriented architectures, RESTful and SOAP interfaces, publish/subscribe		

Table 68. Weekly plan and details of all topics and subjects of distributed systems course at (SCU)

			architectures, Linda tuple space case study		
Week 5	Theory: Architectu res of distributed systems	Chapter 2: middleware organization and system architectures	Wrappers and interceptors, centralized architectures (simple and multi-tiered), decentralized architectures (structured, unstructured and hierarchically p2p networks), flooding and random walk, Skype case study, hybrid architectures (edge server and BitTorrent)		
Week 6	Theory: Processes and threads in distributed systems	Chapter 3: Threads and processes, multi- threading and multi- processing	Recall: threads and processes from OS course, LWP, multi-threaded clients, multi-threaded servers, Virtualization concepts	Operatin g systems (undergr ad course)	
Week 7	Theory: Processes and threads in distributed systems	Chapter 3: virtualization	Types of virtualizations (PVM, Native VMM, hosted VMM), Amazon EC2 case study, client and server side software for transparency (xWindow and VNC)		
Week 8	Theory: Processes and threads in distributed systems	Chapter 3: Servers and migration	Design issues in servers, object servers, ICE and Enterprise Java Beans case studies, server clusters, code migration, models for migration, migration in heterogeneous systems		
Week 9	Theory: Communic ation in distributed systems	Chapter 4: Introduction and RPC	Layered architecture, Types of communications, basics of RPC, parameter passing (marshalling and un-marshalling), copy-by- value/reference/restore, stub generation, variations of RPC	Compute r networks (undergr ad course)	
Week 10	Theory: Communic ation in distributed systems	Chapter 4: MoM, multicast communicati on	Socket programming, ZeroMQ, Publish/subscribe, MPI, message queuing, message brokers, IBM WebSphere case study, AMQP, multicast communication, gossip- based methods	Compute r networks (undergr ad course)	
Week 11	Theory: Coordinati on in distributed systems	Chapter 6: basics of coordination, physical and logical clock	Physical clocks, clock synchronization algorithms, NTP, Berkeley algorithm, synchronization in wireless networks, Lamport's logical clock		
Week 12	Theory: Coordinati on in distributed	Chapter 6: logical clocks (cont'd), applications	Totally ordered multicast, vector clocks, mutual algorithms, centralized/decentralized/distributed /token ring algorithms, election		

16.04.2021

	systems	of synchronizati on	algorithms, GPS and location algorithms	
Week 13	Practice: Project			

 Table 69. Recommended Textbook of distributed systems course at (SCU)

Title of the Book or reference	Publication Year	Link to the reference
Distributed Systems, Principles and	2017 (3 rd	https://www.distributed-
Paradigms	edition)	systems.net/index.php/books/ds3/

Table 70. Recommended relevant courses to distributed systems course at (SCU)

Suggested Topic	Required Sessions	Pre-requisites
Message passing methods in IoT	2	Distributed systems
Synchronization methods in IoT	2	Distributed systems
Election and multicast methods in IoT	2	Distributed systems

4.26 ADVANCED ARTIFICIAL INTELLIGENCE

This course is being offered as part of the Master's degree in IT engineering at the University of Sistan and Baluchestan (USB). The course consists of some chapters ranging from the Intelligent Agents, Knowledge representation, higher inference, uncertain knowledge and inference, Application: Advanced topics of Artificial Intelligence and Learning from Observations Forms of Learning, Inductive Learning, Learning Decision Trees and Ensemble Learning.

The USB has enough experience in teaching of this course and can provide enough materials for this course to the consortium.

USB uses courses 1 national and 1 international below links as base or would suggest them in terms of the content and quality of the course:

National

 http://www.en.sharif.edu/Programs/master-computer-engineering-artificial-intelligenceand-robotics

International

• <u>https://online.bath.ac.uk/online-courses/msc-artificial-intelligence/curriculum</u>

The practical part of the course is offered in the form of teaching assistantship. Further details and breakdown of current topics in this course are given in Table 71. Recommended textbooks are shown in Table 72.

Week #	Theory/Practice	Macro Topics	Micro Topics	Pre- requisites	Comments
	Intelligent Agents (ch. 2) Agents and Environments,				
Week 1	Good Behavior: The				
	Concept of Rationality, the				

Table 71. Weekly plan and details of all topics and subjects of advanced artificial intelligence course at (USB)

	Nature of Environments,		
	the Structure of Agents.		
	Knowledge representation:		
Week 2	production system, frame,		
	semantic network		
	Knowledge representation:		
Week 3	ontology, semantic Web,		
	description logic		
	Higher inference:		
Week 4	Nonmonotonic inference,		
	answer set programming		
Wook F	Higher inference: Inductive		
Week 5	logic programming		
	Uncertain knowledge and		
Wook 6	inference: Probabilistic		
week o	reasoning with temporal		
	information		
	Application: Advanced		
	topics of Artificial		
Week 7	Intelligence (Meta level		
	abduction and its		
	application)		
	Application: Advanced		
Maak 9	topics of Artificial		
week o	Intelligence (Interactive		
	agent)		
	Learning from Observations		
	Forms of Learning, Inductive		
week 9	Learning, Learning Decision		
	Trees, Ensemble Learning.		
Week	Croup project		
10	Group project		
Week	Design project		
11	Design project		
Week	Presentation 1		
12			
Week	Presentation 2		
13			

Table 72. Recommended Textbook of advanced artificial intelligence course at (USB)

Title of the Book or reference	Publication Year	Link to the reference
Artificial Intelligence - A Modern Approach	Pearson; 3rd edition (December 1, 2009)	https://www.amazon.com/Artificial-Intelligence- Modern-Approach-3rd/dp/0136042597

4.27 ADVANCED COMPUTER NETWORKS

This course is being offered in the master's degree in IT engineering at the University of Sistan and Baluchestan (USB) and SCU. The course consists of some chapters ranging from the Network layer addressing and forwarding, Network management, Queueing analysis, network performance evaluations, future internet design, comparative critique, deployment issues, QoS mechanisms, protocols and architectures and Traffic engineering.

The USB has enough experience in teaching of this course and can provide enough materials for this course to the consortium.

USB uses courses 1 national and 1 international below links as base or would suggest them in terms of the content and quality of the course:

National

• http://www.en.sharif.edu/Programs/master-information-technology-it-computer-networks/

International

• https://www.southampton.ac.uk/courses/modules/comp3210

The practical part of the course is offered in the form of teaching assistantship. Further details and breakdown of current topics in this course are given in Table 73. Recommended textbooks are shown in Table 74.

Week #	Theory/Practice	Macro Topics	Micro Topics	Pre- requisites	Comments
Week 1	Network layer addressing and forwarding (IP, 1Pv6, NAT),				
Week 2	Transport layer (TCP, UDP),				
Week 3	Congestion control techniques (TCP, Frame-relay)				
Week 4	IP multicast (IGMP, MBONE, Multicast Routing/Transport/Congestion Control),				
Week 5	Network management, Auto- configuration (SNMP, DHCP, ICMP, ICMPv6),				
Week 6	Queueing analysis, network performance evaluations				
Week 7	future internet design, comparative critique, deployment issues				
Week 8	QoS mechanisms, protocols and architectures (scheduling, shaping, RTP, Intserv, Diff- serv, RTP, RSVP),				
Week 9	Traffic engineering (IP-over- ATM, MPLS, OSPF-extensions, VPNs)				
Week 10	Group project				
Week 11	Design project				
Week 12	Presentation 1				

Table 73. Weekly plan and details of all topics and subjects of advanced computer networks course at (USB)

Table 74. Recommended Textbook of advanced computer networks course at (USB)

Title of the Book or reference	Publication Year	Link to the reference
Advanced Computer Networks Author: Shah, Ambawade, Mehra, Agarwal	Publisher : Dreamtech Press	http://www.dreamtechpress.com/product/advanced- computer-networks/

4.28 COMPUTER NETWORKS

This course is being offered as part of the Bachelor's degree in computer science at the University of Sumer (USU).

The US also suggested these courses Artificial Intelligence, Data Mining, Mobile Computing and Computer Security with topics of "Mobile Applications Development, Machine Learning for wireless communications, Embedded Processors".

US uses courses 3 international below links as base or would suggest them in terms of the content and quality of the course:

International

- https://www.eurecom.fr/en/teaching/master-science/master-degree-internet-of-things-IoT
- <u>https://www.qmul.ac.uk/postgraduate/taught/coursefinder/courses/internet-of-things-data-msc/</u>
- <u>https://www.southampton.ac.uk/courses/internet-of-things-masters-msc</u>

4.29 NETWORKS AND COMMUNICATIONS

This course is being offered as part of the Master's degree in computer science at the University of Wasit (UWA). The course consists of chapters ranging from the Data communication, Networks, OSI Mode, Internet model, Client/Server Paradigm, Architecture, and Internet model.

UWA uses courses one international below links as base or would suggest them in terms of the content and quality of the course:

• http://handbook.curtin.edu.au/units/31/315531.html

The UWA has enough experience in teaching of this course and can provide enough materials for this course to the consortium. Weekly plan and details of all topics and subjects in this course are given in Table 75. Recommended textbooks are shown in Table 76. Table 77 shows subjects and/or courses that are not in this course, but can make IoT graduates more competent and competitive to the market and industry.

Week #	Session	Topic(s)	Details	Pre-requisites
	Soccion	Introduction		
	1	Data communication		
Week 1	Ţ	Networks		
	Session	Dractical Socian		
	2	Practical Session		
Week 2	Session	Network Topologies		
	1	Network categories		

Table 75. Weekly plan and details of all topics and subjects of networks and communications course at (UWA)

	Session	Practical Session	
	2		
Week 3	Session 1	Network performance issues and concepts Network Models Layered tasks	
	Session 2	Practical Session	
Week 4	Session 1	OSI Mode	
	Session 2	Practical Session	
Mook F	Session 1	Internet model (TCP/IP protocol suite)	
VVEEK 5	Session 2	Practical Session	
Wook C	Session 1	Network Layer	
VVEEK O	Session 2	Practical Session	
Week 7	Session 1	Client/Server Paradigm Connectionless Versus Connection-Oriented Service	
	Session 2	Practical Session	
Week 8	Session 1	Architecture Client (Browser) Server	
	Session 2	Practical Session	
Week 9	Session 1	Internet model (TCP/IP protocol suite	
	Session 2	Practical Session	

Table 76. Recommended Textbook of networks and communications course at (UWA)

Title of the Book or reference	Publication Year	Link to the reference
Computer Networks, A, Tanenbaum, Prentice – Hall	2000	
Computer Communications, K. Beauchamp, Chapman & Hall	2000	

Table 77. Recommended relevant courses to networks and communications course at (UWA)

Suggested Topic	Required Sessions	Pre-requisites
Statistics & Probability	3 weeks	

5 ANALYSIS OF EXISTING COURSES IN PROGRAM COUNTRIES

5.1 EMBEDDED CONTROL (EC)

This course is being offered as part of Master's degree in International Mechatronics at the University of Siegen (USI). Recommended prerequisites for this course are: Fundamentals of Control Theory, Electronics, Basic Digital Electronics, Programming Languages, Modelling and Simulation. The course consists of 4 chapters of Modelling and Mathematical Descriptions of Dynamic Systems, Design of Embedded Control Systems, Analysis and Verification and State-of-the-Art Tools for Embedded Controller Development.

The purposes of the course are to:

- become acquainted with application fields of embedded control systems
- understand working methods to develop embedded control systems
- understand models of embedded control systems and comprehend the interplay of software and hardware with the physical environment
- get to know motivations of Rapid Control Prototyping (RCP)
- work with state-of-the-art development tools for real-time simulation and rapid control prototyping (e.g., MATLAB/Simulink)
- Provide background knowledge (numerical mathematics, operating systems, system theory) to understand the functionality of these development tools.
- Finally bridge the gap from theory to practical implementing by performing a practical experiment in the lab.

The USI has enough experience in teaching of this course and can provide enough materials for this course to the consortium. The course finally bridges the gap from theory to practical implementing by performing a practical experiment in the lab. Weekly plan and details of all topics and subjects in this course are given in Table 78. Table 79 shows the recommended textbook for the teaching assistant part of this course.

Week #	Theory/Practice	Macro Topics	Micro Topics	Pre-requisites	Comments
Week 1	 Modeling and Mathematical Descriptions of Dynamic Systems Discrete Dynamics Hybrid Systems 				
Week 2	 Composition of State Machines 			State-of-the-Art	
Week 3	Concurrent Models of Computation			Tools for	
Week 4	 2. Design of Embedded Control Systems Embedded Processors 			Embedded Controller Development	
Week 5	Memory Architectures			MATLAB/Simulink	
Week 6	Input and Output				
Week 7	Multitasking Scheduling				
Week 8	3. Analysis and VerificationInvariants and Temporal LogicEquivalence, Refinement,				

Table 78. Weekly plan and details of all topics and subjects of embedded control (EC) course at (USI)

	Simulations		
Week 9	 Reachability Analysis and Model Checking Quantitative Analysis 		
Week 10	 State-of-the-Art Tools for Embedded Controller Development MATLAB/Simulink 		

Table 79. Recommended Textbook of embedded control (EC) course at (USI)	

Title of the Book or reference	Publication Year	Link to the reference
E. A. Lee and S. A. Seshia, Introduction to Embedded Systems - A Cyber- Physical Systems Approach, LeeSeshia.org,	2011	
Peter Marwedel. Embedded System Design Embedded Systems Foundations of Cyber- Physical Systems. 2nd Edition.	2011	
L. Gomes, J.M. Fernandes. Behavioral Modeling for Embedded Systems and Technologies: Applications for Design and Implementation. Information Science Reference.	2009	
P.J. Mosterman. Model-Based Design for Embedded Systems. CRC Press.	2010	
J. Ledin. Embedded Control Systems in C/C++: An Introduction for Software Developers Using MATLAB. CMP Books.	2004	

5.2 ELECTRICAL AND ELECTRONIC ENGINEERING I (EEEI)

This course is being offered as part of Master's degree in International Mechatronics at the University of Siegen (USI). Recommended prerequisites for this course are: Basic knowledge of Electricity, Mathematical Skills including Infinitesimal Calculus, Complex Calculus and Vector Calculus. The course consists of 6 chapters of Electromagnetic Fields, Basic Circuit Theory, The Analysis of DC Circuits, The Dynamics of Circuits, The Analysis of AC Circuits and Power in AC Circuits. In this course the students

- are familiar with the physical quantities appearing in electric circuits.
- are able to analyses DC circuits and to choose the appropriate method from a set of methods.
- are familiar with the dynamic behavior of inductances and capacitances.
- are able to analyze the steady state behavior of AC circuits using the representation with phasors.
- know the behavior of polyphaser circuits.
- know how to derive differential equations for easy dynamic circuits and to solve for the unknown quantities.
- have the basis to understand advanced tasks and topic taught in following courses, e.g. Electrical and Electronic Engineering II or Actorics.

Weekly plan and details of all topics and subjects in this course are given in Table 80. Table 81 shows the recommended textbook for the teaching assistant part of this course.

Week #	Theory/Practice	Macro Topics	Micro Topics	Pre-requisites	Comments
Week 1	 Electromagnetic Fields Electric Forces and Electric Fields Magnetic Forces and Magnetic Fields 				
Week 2	 Electrodynamics Basic Circuit Theory Energy and Charge Current and Kirchhoff's Current Law 				
Week 3	 Voltage and Kirchhoff's Voltage Law Energy Flow in Electrical Circuits Circuit Elements: Resistances and Sources 				
Week 4	 Series and Parallel Resistances: Voltage and Current Dividers The Analysis of DC Circuits Superposition Thevenin's and Norton's Equivalent Circuits 			Basic knowledge of Electricity, Mathematical Skills including Infinitesimal Calculus, Complex Calculus, Vector Calculus	
Week 5	 Source Transformations Node-Voltage Analysis Loop-Current Analysis The Dynamics of Circuits 				
Week 6	 Theory of Inductors and Capacitors First-Order Transient Response of RL and RC- Circuits RLC Circuits 				
Week 7	 The Analysis of AC Circuits Introduction to Alternating Current (AC) AC Circuit Problem 				

Table 80. Weekly plan and details of all topics and subjects of electrical and electronic engineering I (EEEI) course at (USI)

Week 8	•	Representing Sinusoids with Phasors, Impedance: Representing the Circuit in the Frequency Domain		
Week 9	•	Phasor Diagrams for RL, RC, and RLC-Circuits Power in AC Circuits AC Power and Energy in the Time-Domain		
Week 10	•	Power and Energy in the Frequency Domain Transformers Polyphase Systems		

Table 81. Recommended Textbook of electrical and electronic engineering I (EEEI) course at (USI)

Title of the Book or reference	Publication Year	Link to the reference
Foundations of electrical engineering -		
J. R. Cogdell - Prentice Hall		
Introduction to Electrical Engineering -		
M.S. Sarma - Oxford University Press		
Electric Circuits (5th edition) - Nilsson		
and Riedel - Addison Wesley		
Schaum's Outline of Basic Electrical		
Engineering - J.J. Cathey - McGraw-Hill		
Professional Publishing		
Introduction to Electric Circuits (4th		
edition) - Dorf & Svoboda, - John		
Wiley and Sons		
Electric Circuit Analysis - Ken Sander -		
Addison Wesley		
Electrical and Electronic Technology		
(8th edition) - E. Hughes - Prentice Hall		
Linear Circuit Analysis (2nd Edition) -		
DeCarlo/Lin - Oxford University Press		
Fundamentals of Electrical		
Engineering - L.S. Bobrow, - Oxford		
University Press		
Electrical and electronics engineering		
for scientists and engineers - K. A.		
Krishnamurthy, M.R. Raghuveer - John		
Wiley and Sons		
Basic Engineering Circuit Analysis (5th		
edition) - J David Irvin - Prentice Hall		

5.3 AUTOMATION AND INDUSTRIAL COMMUNICATION (AIC)

This course is being offered as part of Master's degree in Mechatronics at the University of Siegen (USI). Targeted learning outcomes are the students will be able to choose the appropriate software tools for their application. They get familiar with the types of interface signals of industrial automation systems, especially PLCs, which are the standard automation devices in the industry. With the knowledge about how PLCs communicate with their periphery or with each other respectively they can decide about the usability of industrial communication systems.

The students will be able to choose the appropriate software tools for their application. They get familiar with the types of interface signals of industrial automation systems, especially PLCs, which are the standard automation devices in the industry. With the knowledge about how PLCs communicate with their periphery or with each other respectively they can decide about the usability of industrial communication systems.

Weekly plan and details of all topics and subjects in this course are given in Table 82. Table 83 shows the recommended textbook for the teaching assistant part of this course.

Week #	Theory/Practice	Macro Topics	Micro Topics	Pre-requisites	Comments
Week 1	principles of runtime and application software are explained				
Week 2	Basic properties of the usual programming languages.				
Week 3	Interfaces to the process and to the other automation devices				
Week 4	digital and analog signals				
Week 5	A/D- and D/A-conversion				
Week 6	absolute and incremental encoders				
Week 7	field bus systems, and Industrial Ethernet				

Table 82. Weekly plan and details of all topics and subjects of automation and industrial communication (AIC) course at
(1151)

Table 83. Recommended Textbook of automation and industrial communication (AIC) course at (USI)

Title of the Book or reference	Publication Year	Link to the reference
Günter Schröder: Automation and		
Industrial Communication Part I, II and		
III, available at the chair or in Moodle		

5.4 FUNDAMENTALS FOR MECHATRONIC APPLICATIONS (FMA)

This course is being offered as part of Master's degree in Computer Science at the University of Siegen (USI). This course consists of 2 pars as: Part 1: Electrical and Electronic Engineering II and Part 2: Mechatronic Design for Production Machines. Recommended prerequisites for part 1 are topics dealt with in Electrical and Electronic Engineering I.

In part 1, the students

- are familiar with the behavior of semi conductive materials.
- are able to analyze nonlinear circuits containing diodes.
- know the behavior of circuits with transistor and can analyze it.

- can distinguish the biasing from the small signal behavior.
- can use transistor circuits for switching and for amplification purposes.
- are familiar with filter circuits based on operational amplifiers.

- have a basis to understand following modules e.g. Electrical Machines and Power Electronics and Part 2:

To give students the opportunity to use the mechatronics in the industry and implement it in practice.

Weekly plan and details of all topics and subjects in this course are given in Table 84. Table 85 shows the recommended textbook for the teaching assistant part of this course.

Table 84. Weekly plan and details of all topics and subjects of fundamentals for mechatronic applications (FMA) course at (USI)

Week #	Theory/Practice	Macro Topics	Micro Topics	Pre-requisites	Comments
Week 1	Part 1: Semiconductor Diodes				
Week 2	Part 2: Introduction				
Week 3	Project Management				
Week 4	Hydraulics, Pneumatics (Details see lecture Prof. Carolus) Basic considerations for hydraulics and pneumatics for the performance			Part 1: Topics dealt with in Electrical and Electronic	
Week 5	Cooling			required.	
Week 6	Communication			Part 2: None	
Week 7	Cabinets and Wiring				
Week 8	Documentation				
Week 9	Commissioning, startup, customer acceptance				
Week 10	Commercial and legal considerations				

Table 85. Recommended Textbook of fundamentals for mechatronic applications (FMA) course at (USI)

Title of the Book or reference	Publication	Link to the reference
	Year	
Foundations of electrical engineering -		
J. R. Cogdell - Prentice Hall		
Introduction to Electrical Engineering -		
M.S. Sarma - Oxford University Press		
Electric Circuits (5th edition) - Nilsson		
and Riedel - Addison Wesley		
Schaum's Outline of Basic Electrical		
Engineering - J.J. Cathey - McGraw-Hill		
Professional Publishing		
Introduction to Electric Circuits (4th		
edition) - Dorf & Svoboda, - John		
Wiley and Sons		

Electric Circuit Analysis - Ken Sander -	
Addison Wesley	
Basic Engineering Circuit Analysis (5th	
edition) - J David Irvin - Prentice Hall	
Electrical and Electronic Technology	
(8th edition) - E. Hughes - Prentice Hall	
Linear Circuit Analysis (2nd Edition) -	
DeCarlo/Lin - Oxford University Press	
Fundamentals of Electrical	
Engineering - L.S. Bobrow, - Oxford	
University Press	
Electrical and electronics engineering	
for scientists and engineers - K. A.	
Krishnamurthy, M.R. Raghuveer - John	
Wiley and Sons	

5.5 INTRODUCTION TO PROGRAMMING (IP)

This course is being offered as part of Master's degree in Computer Science at the University of Siegen (USI). The course introduces the basic concepts of computer programming, with emphasis on the requirements of engineering students. It deals with sequential, imperative and object-oriented programming, using the C++ programming language. The lecture is accompanied by a series of programming assignments.

The students

- know the foundations of imperative programming in the programming language C++, including the most important language constructs of C++.
- can analyse informal algorithmic descriptions and can apply the proper language constructs to implement them.
- have the practical ability to create simple programs in a self-employed and correct way, using adequate programming tools (compiler, make, debugger).
- understand the basic concepts of object oriented programming.
- can apply object oriented techniques to model simple real world scenarios.
- can analyse unknown program code in order to determine and understand its behaviour.

Weekly plan and details of all topics and subjects in this course are given in Table 86. Table 87 shows the recommended textbook for the teaching assistant part of this course.

Week #	Theory/Practice	Macro Topics	Micro Topics	Pre-requisites	Comments
Week 1	Introduction: algorithms and programs				
Week 2	Data: variables, types and constants				
Week 3	Statements: expressions, conditional statements, loops			Basic knowledge of computers and computer science	
Week 4	Exception handling				
Week 5	Functions and recursion				
Week 6	Data structures: arrays and				

Table 86. Weekly plan and details of all topics and subjects of introduction to programming (IP) course at (USI)

	structures		
Week 7	Pointers, references, memory allocation		
Week 8	Classes: attributes, methods, constructors, destructors, operators		
Week 9	Object oriented programming: inheritance, polymorphism, abstract classes		
Week 10	Container classes, standard template library		

Table 87. Recommended Textbook of introduction to programming (IP) course at (USI)

Title of the Book or reference	Publication Year	Link to the reference
J. Liberty. Teach Yourself C++ in 10		
Minutes. Sams Publishing, 2002		
Bruce Eckel: Thinking in C++, Vol. 1,		
2nd Edition< Prentice Hall, 2000		

5.6 SENSORICS (SEN)

This course is being offered as part of Master's degree in Computer Science at the University of Siegen (USI).

Intended learning results / competences consist of:

Two main parts:

A) Physical principles required for measuring the most important quantities. Error propagation.

B) Basics in signal processing: FFT, digital dynamic systems, filters.

Weekly plan and details of all topics and subjects in this course are given in Table 88. Table 89 shows the recommended textbook for the teaching assistant part of this course.

Week #	Theory/Practice	Macro Topics	Micro Topics	Pre-requisites	Comments
Week 1	Measurement Techniques: Introduction to Measurement Techniques: Measurement of Electrical Ouantities	Topics		Basic knowledge	
Week 2	Measurement of Non- Electrical Quantities			in Mechanics, Physics,	
Week 3	Digital Measurement Techniques			Mathematics and Electrical	
Week 4	Measurement Errors and Statistics			Engineering	
Week 5	Static and Dynamic Behavior of Sensors B: Signal Processing				

Table 88. Weekly plan and details of all topics and subjects of sensorics (SEN) course at (USI)

Week 6	Introduction to Signal Processing		
Week 7	Time-Discrete Systems and Signals		
Week 8	Transformation Into the Frequency Domain (Discrete Fourier Transform)		
Week 9	Filters		

Table 89. Recommended Textbook of sensorics (SEN) course at (USI)

Title of the Book or reference	Publication Year	Link to the reference
Ifeachor E., Jervis B.: "Digital Signal		
Processing: A Practical Approach",	2001	
Prentice-Hall, 8. Ed., 960 p		
Sayer M., Mansingh A.: "Measurment,		
Instrumentation and Experiment	2004	
Design in Physics and Engineering",	2004	
Prentice-Hall,		
Tumanski S.: "Principles of Electrical	2006	
Measurement", Taylor & Francis	2006	
Oppenheim A.V., Schafer R.W., Buck		
J.R.: "Discrete-Time Signal Processing",	2008	
Prentice- Hall, 9. Ed., 950 p		

5.7 ACTORICS (ACT)

This course is being offered as part of Master's degree in Computer Science at the University of Siegen (USI). The course is based on the fundaments obtained in "Power Electronics and Electrical Machines" and introduces the theory and practical aspects of the most important electrical actuators, mainly electrical drives, used in industrial and mechatronics applications.

The course is based on the fundaments obtained in "Power Electronics and Electrical Machines" and introduces the theory and practical aspects of the most important electrical actuators, mainly electrical drives, used in industrial and mechatronics applications.

The students get acquainted with the function and especially with the dynamic behavior of these devices. The torque, speed and position control of electrical drives and the implementation of the control schemes with appropriate electronics is in the main focus of the course.

The students develop the skills required for the basic design of positioning control loops in mechatronic systems.

Weekly plan and details of all topics and subjects in this course are given in Table 90. Table 91 shows the recommended textbook for the teaching assistant part of this course.

Week #	Theory/Practice	Macro Topics	Micro Topics	Pre-requisites	Comments
Week 1	Mechanics			Electrical	
Week 2	Fundamentals of electrical actuators			Machines and Power	

Table 90. Weekly plan and details of all topics and subjects of actorics (ACT) course at (USI)

D1.1

Week 3	Types of machines and characteristics		Electronics Basic knowledge of	
Week 4	Main issues in the design of electromechanical systems		Control	
Week 5	Current sensors, Angular and length sensor			
Week 6	Current control, Speed control			
Week 7	Position control			
Week 8	Torque control in DC- Machines and AC-Machines			
Week 9	Field orientation			

Table 91. Recommended Textbook of actorics (ACT) course at (USI)

Title of the Book or reference	Publication Year	Link to the reference
Mohan, N; Undeland, T; Robbins, W:		
Power electronics, Converters,		
Applications and Design, John Wiley &		
Sons, Inc		
Leonhard, W.:Control of electrical		
drives, Springer		
Groß, H. ; Hamman, J. ; Wiegärtner, G.		
: Electrical Feed Drives in Automation,		
Publicis MCD Corporate Publishing		

5.8 SOFTWARE ENGINEERING (SWE)

This course is being offered as part of Master's degree in Computer Science at the University of Siegen (USI).

The goal of this course is to learn and practice "Software Project Management", and also to improve the teamwork skills of students through a project work. The course consists of lectures and exercise (certain project work) containing oral presentation and written report. In this course an introduction to Software Project Management area are provided so that a student can guide a team and run successful software project.

The learning outcomes are classified based on integration of programming- and project management skills of students towards development of a software prototype. The students have notice (1) to intensify programming experience gained in the course of Introduction to Programming, (2) to learn basic techniques for managing a software development project using software development lifecycle models such as Waterfall Model, Spiral Model, etc. , (3) to be able to develop documents of the early software development phases notably data-, control- and design models using the Unified Modelling Language (UML) editors, (4) to practice development of software Database using ADOX or SQLite library, (5) to develop software Graphical User Interface (GUI), (6) to create project reports based on the project achievements and results, and (7) to practice presentation and demonstration of teamwork results in front of audience using presentation tools such as PowerPoint.

Weekly plan and details of all topics and subjects in this course are given in Table 92. Table 93 shows the recommended textbook for the teaching assistant part of this course.

Table 92. Weekly plan and details of all topics and subjects of software engineering (SWE) course at (USI)

Week #	Theory/Practice	Macro Topics	Micro Topics	Pre-requisites	Comments
Week 1	Software development lifecycles				
Week 2	Software project planning			Programming	
Week 3	Software project management			skills in an Object Oriented	
Week 4	Software requirements engineering			Programming language such as C++ or Java/	
Week 5	Software modelling				
Week 6	Software design (based on concepts of Object Oriented Design & Programming) using UML			Knowledge on basic principles of Project Management	
Week 7	Software testing and quality management				

Table 93. Recommended Textbook of software engineering (SWE) course at (USI)

Title of the Book or reference	Publication Year	Link to the reference
Software Project Management: A		
Unified Framework, W. Royce,	1998	
Addison-Wesley,		
Applied Software Project		
Management, A. Stellman & J. Greene,	2005	
O'REILLY		
Agile Project Management, J.	2010	
Highsmith, 2nd Ed., Addison-Wesley	2010	

5.9 MECHATRONIC SYSTEMS (MESY)

This course is being offered as part of Master's degree in Computer Science at the University of Siegen (USI). The course "Mechatronics Systems" completes the studies by enhancing and deeping aspects of automatic control engineering, modelling and project management. Main topics are modelling, linearization, discretization, order reduction techniques and system identification. The course also includes a group project for practical application of mechatronic knowledge. Purposes of the course are to:

- Design and analyse mechatronic systems as an optimal combination of mechanical, electrical and software components
- Demonstrate the advantage of mechatronic systems in different application areas
- Get experience with mechatronic systems by performing different laboratory experiments
- Apply project management skills with respect to
- Rhetoric
- Risk management and financial planning
- Project structuring, scheduling and resource planning b Project control and monitoring

Weekly plan and details of all topics and subjects in this course are given in Table 94. Table 95 shows the recommended textbook for the teaching assistant part of this course.

Table 94. Weekly plan and details of all topics and subjects of mechatronic systems (MESY) course at (USI)

Week #	Theory/Practice	Macro Topics	Micro Topics	Pre-requisites	Comments
Wook 1	Characteristics of				
WCCKI	mechatronic systems				
Mook 2	Sensors and actuators for				
week z	mechatronic systems				
Week 3	Modelling				
Week 4	Identification				
Wook E	Control concepts for				
week 5	mechatronic systems				
	Typical examples of				
Week 6	integrated mechanical –				
	electrical systems				
Week 7	Project management skills				

Table 95. Recommended Textbook of mechatronic systems (MESY) course at (USI)

Title of the Book or reference	Publication Year	Link to the reference
Ljung: System Identification, Prentice Hall, 1987, ISBN 0-13-881640-9	1987	
R. Isermann: Mechatronische Systeme, Springer Verlag	1999	
J. Billingsley: Mechatronics and Machine Vision, Research Studies Press Ltd., ISBN 0-86380-261-3	2000	
Chr. D. Rahn: Mechatronic Control of Distributed Noise and Vibration, Springer Verlag, ISBN 3-540-41859-8	2001	
D. Nesculescu: Mechatronics, Prentice Hall, ISBN 0-201-44491-7	2002	
Emerging Trends in Mechatronics for Automation, Phoenix Publishing House PVT LTD, ISBN 81-7484-065-6	2002	
W. Bolton: Bausteine mechatronischer Systeme, 3. Auflage, Pearson Studium, ISBN 3-8273-7098-1	2004	
Schilling: Fundamentals of Robotics, Prentice Hall		
Craig: Robotics, Addison Wesley		

5.10 DEVELOPMENT OF THE EMBEDDED SYSTEMS WITH FPGAS

This course is being offered as part of Master's degree in Computer Science at the University of Siegen (USI). The USI has enough experience in teaching of this course and can provide enough materials for this course to the consortium.

In this course Students know SoC architectures such as ZYNQ

Students know how to utilize the Hardware platform using development tools (e.g., Vivado).

Students know how to utilize the software platform (Software Development Kit) * Students get familiar with Zedboard and ZYBO Boards.

Students can apply hardware and software concepts practically at the end of the course

Weekly plan and details of all topics and subjects in this course are given in Table 96. Table 97 shows the recommended textbook for the teaching assistant part of this course.

Table 96. Weekly plan and details of all topics and subjects of development of the embedded systems with FPGAS course at (USI)

Week #	Theory/Practice	Macro Topics	Micro Topics	Pre-requisites	Comments
Week 1	Introduction to Embedded System Design using Zynq				
Week 2	Zynq Architecture				
Week 3	Implementing Embedded Systems using Programmable Logic				
Week 4	Adding Your Own IP Peripheral				
Week 5	Software Development Environment and Debugging			Digital Design Computer	
Week 6	System Debugging using Vivado Logic Analyzer and SDK			architecture I	
Week 7	Memory Interfacing				
Week 8	Interrupts				
Week 9	Processor Configuration and Bootloader				
Week 10	Programming a Microblaze Processor				

Table 97. Recommended Textbook of development of the embedded systems with FPGAS course at (USI)

Title of the Book or reference	Publication Year	Link to the reference
The zynq Book, Louise, Ross, Martin, Bob and David, Xilinx Tuturials, labs and data sheets.	2015	

5.11 DEEP LEARNING

This course is being offered as part of Master's degree in Computer Science at the University of Siegen (USI).

Upon completion of this module, students understand the basic concepts of deep learning. They can analyze the chain rule for nested functions with several variables and are able to implement the gradient descent algorithm for simple networks from scratch. Students are familiar with a deep learning framework and can implement architectures for regression and classification problems on their own. Students are familiar with different design patterns for the architecture of neural networks and can explains crucial steps for the successful training and generalization of neural networks. Weekly plan and details of all topics and subjects in this course are given in Table 98. Table 99 shows the recommended textbook for the teaching assistant part of this course.

Week #	Theory/Practice	Macro	Micro Topics	Pre-requisites	Comments
	Supervised machine	lopics		•	
Week 1	learning as an				
Week 1	interpolation problem				
	Simple network				
	architectures: Fully				
Week 2	connected layers, rectified				
	linear units, sigmoids,				
	softmax				
	Gradient descent for				
	nested functions: The				
Week 3	chain rule and it's				
	implementation via				
	backpropagation				
	Stochastic gradient				
Week 4	descent on large data sets,				
	Capacity overfitting and				
Week 5	underfitting of neural				
	networks				
	Training testing and			Previous	
Week 6	validation data sets			knowledge in	
	Improving generalization:			programming and	
Week 7	data augmentation,			mathematical	
	dropout, early stopping			basics	
	Working with images:				
	Convolutions and pooling				
Week 8	layers. Computing				
Week 8	derivatives and adjoint				
	linear operators				
	Getting the network to				
	train: Data preprocessing,				
Week 9	weight initialization				
	schemes, and batch				
	Applications and state-of				
	the art architectures for				
Week	image classification				
10	segmentation and				
	denoising				
	Architecture designs:				
14/2 -1	Encoder-decoder idea,				
Week	unrolled algorithms, skip				
11	connections + residual				
	learning, recurrent neural				

Table 98. Weekly plan and details of all topics and subjects of deep learning course at (USI)

	networks		
	Implementations in		
	NumPy and PyTorch:		
Week	Hands-on practical		
12	experience by		
	implementing gradient		
	descent on a fully		
	connected network in		
	NumPy. Introduction to		
Maak	the deep, learning		
vveek	framework PyTorch for		
13	training complex models		
	on		
	GPUs		

Table 99. Recommended Textbook of deep learning course at (USI)

Title of the Book or reference	Publication Year	Link to the reference
Deep Learning" by Ian Goodfellow,		
Yoshua Bengio and Aaron Courville		
(http://www.deeplearningbook.org/)		
Introduction to Python, e.g. at		
https://github.com/jrjohansson/scientific-		
python-lectures		
Coursera course "Machine Learning" by		
Andrew Ng		

5.12 DISTRIBUTED SYSTEMS

This course is being offered as part of Master's degree in Computer Science at the University of Siegen (USI). In this course students will be able to explain the characteristics of distributed systems, in particular the effects of the lack of global time, and identify the resulting problems in synchronizing and ensuring the consistency of replicated data. They can explain relevant distributed algorithms and use them to solve corresponding problems. They can differentiate between the different architecture models for distributed systems and the different types and tasks of middleware. In addition, they are able to develop simple distributed applications using Java RMI. Weekly plan and details of all topics and subjects in this course are given in Table 100. Table 101 shows the recommended textbook for the teaching assistant part of this course.

	Table 100. Weekly plan and details of all topics and subjects of distributed systems course at (USI)					
Week #	Theory/Practice	Macro Topics	Micro Topics	Pre-requisites	Comments	
Week 1	Definition of terms, hardware and software architectures of distributed systems			Operating Systems I, Algorithms and Data Structures,		
Week 2	Middleware: tasks, programming models, services			Object Orientation and Functional		

......

Week 3	Distributed programming with Java RMI	F	Programming	
Week 4	Name services			
Week 5	Process management			
Week 6	Time and state in distributed systems			
Week 7	Coordination and synchronization			
Week 8	Replication and consistency			
Week 9	Distributed file systems			
Week 10	Distributed shared memory			

 Table 101. Recommended Textbook of distributed systems course at (USI)

Title of the Book or reference	Publication Year	Link to the reference
Robert Orfali, Dan Harkey.		
Client/Server-Programming with Java	1998	
and Corba. John Wiley & Sons		
Torsten Langner. Verteilte		
Anwendungen mit Java.	2002	
Markt+Technik		
Ulrike Hammerschall. Verteilte		
Systeme und Anwendungen. Pearson	2008	
Studium		
George Coulouris, Jean Dollimore, Tim		
Kindberg, Gordon Blair. Distributed	2012	
Systems, Concepts and Design.	2012	
Pearson Education		
Andrew S. Tanenbaum, Marten van		
Steen. Distributed Systems, Principles	2016	
and Paradigms. Pearson Education		

5.13 EMBEDDED SYSTEMS

This course is being offered as part of Master's degree in Computer Science at the University of Siegen (USI).

One objective of the module is that students can describe requirements, paradigms, concepts, platforms and models of embedded systems. In particular, students can explain nonfunctional requirements of embedded systems. They can also describe and apply concepts and methods for real time and fault tolerance. Students will become familiar with different components and design principles in order to apply them in concrete problem scenarios. Students can evaluate different development approaches (e.g., time-triggered and event- triggered control) und map them to application scenarios.

Furthermore, students can evaluate platform technologies such as communication protocols, processors and operating systems with respect to their suitability for real-time, safety and reliability requirements.

The USI has enough experience in teaching of this course and can provide enough materials for this course to the consortium.

Weekly plan and details of all topics and subjects in this course are given in Table 102. Table 103 shows the recommended textbook for the teaching assistant part of this course.

Week #	Theory/Practice	Macro Topics	Micro Topics	Pre-requisites	Comments
Week 1	Context and requirements of embedded real-time systems				
Week 2	Modelling of embedded real-time systems				
Week 3	Global time and temporal relations				
Week 4	Reliability				
Week 5	Real-time communicate, Real-time operating systems			Digital Design, Computer Architecture I,	
Week 6	Real-time Scheduling			Operating Systems I	
Week 7	Interaction with the environment			Systems	
Week 8	Design of embedded systems				
Week 9	Validation				
Week 10	Internet of things, Examples of system architectures				

Table 102. Weekly plan and details of all topics and subjects of embedded systems course at (USI)

Table 103. Recommended Textbook of embedded systems course at (USI)

Title of the Book or reference	Publication Year	Link to the reference
L. Gomes, J.M. Fernandes. Behavioral		
Modeling for Embedded Systems and		
Technologies: Applications for Design	2009	
and Implementation. Information		
Science Reference		
P.J. Mosterman. Model-Based Design		
for Embedded Systems.	2010	
CRC Press		
Peter Marwedel. Embedded System		
Design, Embedded Systems	2011	
Foundations of Cyber-Physical	2011	
Systems. 2nd Edition		
E. A. Lee and S. A. Seshia, Introduction		
to Embedded Systems	2011	
 A Cyber-Physical Systems Approach, 	2011	
LeeSeshia.org		

5.14 RECENT ADVANCES IN MACHINE LEARNING

This course is being offered as part of Master's degree in Computer Science at the University of Siegen (USI).

Upon completion of this module, students have an understanding of some exemplary state-of-the-art research papers on machine learning. They are able to explain their main ideas and concepts. Students are familiar with at least one machine learning framework and are able to implement machine learning problems on their own. Additionally, each student specializes in one research paper for which she/he is able to understand, explain, analyse and evaluate the discussed technique. The students are able to run practical experiments for the studied method, and can apply it to new problems or data.

Weekly plan and details of all topics and subjects in this course are given in Table 104. Table 105 shows the recommended textbook for the teaching assistant part of this course.

Week #	Theory/Practice	Macro Topics	Micro Topics	Pre-requisites	Comments
Week 1	Recent advances in imaging (e.g. NeurIPS, ICML, ICLR)			Prior knowledge in programming, mathematics and	
Week 2	Recent advances in vision (e.g. CVPR, ICCV, ECCV)			machine learning, where	
Week 3	Recent advances in graphics			the latter can be acquired through	
Week 4	Recent advances in mechatronics			various modules such as statistical	
Week 5	Recent advances in sensorics, body-worn sensorics			learning theory, artificial intelligence or deep learning	

Table 104. Weekly plan and details of all topics and subjects of recent advances in machine learning course at (USI)

Table 105. Recommended Textbook of recent advances in machine learning course at (USI)

Title of the Book or reference	Publication Year	Link to the reference
Deep Learning" von Ian Goodfellow,		
Yoshua Bengio und Aaron Courville (frei		
verfügbar unter		
http://www.deeplearningbook.org/)		
- Einführung in Python, z.B. unter		
https://github.com/jrjohansson/scientific-		
python-lectures		
Coursera-Kurs "Machine Learning" von		
Andrew Ng		

5.15 THE INTERNET OF THINGS: ARCHITECTURES AND APPLICATIONS

This course is being offered as part of the Bachelor's degree in Computer Science at the University of Manchester (UMA). The course consists of some chapters ranging from the Introduction, Organization, Primary components, IoT systems, IoT architecture, Reality, Nodes, Design issues, Protocols and Security.

D1.1

The UMA has enough experience in teaching of this course and can provide enough materials for this course to the consortium. UMA suggest topic of "Distributed systems" to be taught in the frame of this course to make your listed subjects in this course more complete and practical.

UMA uses courses 2 national and 3 international below links as base or would suggest them in terms of the content and quality of the course:

National

- https://www1.essex.ac.uk/modules/Default.aspx?coursecode=CE324&level=6&period=SP&c ampus=CO&year=20
- https://www.southampton.ac.uk/courses/modules/comp2207

International

- https://executive-education-online.mit.edu/presentations/lp/mit-internet-of-things-onlineshort-course/?ef_id=c:469587831528_d:c_n:g_ti:aud-733905065437:kwd-311189529984_p:_k:%2Biot%20%2Bcourse_m:b_a:117156469424&gclid=EAIaIQobChMI_ob HneG97gIVlqmWCh3-7QNjEAAYASAAEgLSRfD_BwE&gclsrc=aw.ds
- https://courses.students.ubc.ca/cs/courseschedule?tname=subjcourse&course=453&campuscd=UBCO&dept=ENGR&pname=subjarea
- https://www.sydney.edu.au/courses/units-of-study/2021/elec/elec5518.html

The practical part of the course is offered in the form of teaching assistantship. Further details and breakdown of current topics in this course are given in Table 106. Table 107 shows the suggested content for the teaching assistant part of this course. Recommended textbooks are shown in Table 108. Table *109* shows subjects and/or courses that are not in this course, but can make IoT graduates more competent and competitive to the market and industry.

Week #	Theory/Practice	Macro Topics	Micro Topics	Pre-requisites	Comments	
Week 1	Session 1	Introduction	Introduction and evolution of IoT		Onling lastura	
	Session 2	Organization	Structure of IoT systems		Onime lecture	
	Session 1	Primary components	IoT backend modules			
Week 2	Session 2	IoT systems	IoT gateways and the IoT edge	Techniques and methods of distributed systems	Online lecture	
Week 3	Session 1	IoT architecture	Design principles and design requirements for the reference architecture			
	Session 2	Reality	Real-world constraints	Applications and impact of distributed computing on society	Online lecture	
Week 4	Session 1	Nodes	Sensors and actuators for IoT systems		Online lecture	

Table 106. Weekly plan and details of all topics and subjects of the internet of things: architectures and applications course at (UMA)

	Session 2	Design issues	Interoperability and reliability issues	Main issues when designing a distributed system	
	Session 1	Protocols	Communication protocols and protocol stacks for the edge devices		
Week 5	Session 2	Security	Hardware security for edge devices	How techniques supporting distributed computing are applied in practice	Online lecture
	Session 1	Trust	Security, trust, and privacy issues in IoT		Online le struct
week b	Session 2	Privacy	Identity management of IoT edge devices		Online lecture
Wook 7	Session 1	loT case studies	Current enid	How to	Online Lesture
WEER /	Session 2		Sinart griu		Onine lecture
Week 8	Session 1	loT case studies	Home	prototypical	Online lecture
WEEKO	Session 2		automation	distributed	
Week 9	Session 1	IoT case studies	Industrial IoT	applications	Online lecture
Week J	Session 2				
Week	Session 1	Summary	Application,		Online lacture
10	Session 2	Summary	challenges of IoT		Unime lecture

Table 107. Suggested content for the teaching assistant part of the internet of things: architectures and applications course at (UMA)

Week #	Theory/Practice	Macro Topics	Micro Topics	Pre- requisites	Comments
Week 1	Theory	Basic knowledge of IoT systems	Identify the basic organization and components that underpin IoT systems		Workshop
Week 2	Theory	Construct IoT reference architectures	Based on specific design principles and use-related requirements,		Workshop

			construct IoT	
			architectures	
			step by step	
			Apply a design	
			methodology	
Mook 2	Theory	Doploymont	to design IoT	
Week 5	meory	Deployment	systems from	workshop
			specifications	
			to deployment	
			Evaluate the	
	Theory	Wireless communication	characteristics	Workshop
			of wireless	
			radio channels	
vvеек 4			and define the	
			basic principles	
			of modulating	
			techniques	
			Identify the	
			security threats	
			at all levels of	
			the IoT and	
Week 5	Theory	Coouritu	respective	Markahan
	Theory	Security	security	workshop
			techniques	
			used to	
			mitigate these	
			threats	

Table 108. Recommended Textbook of all topics and subjects of the internet of things: architectures and applications course at (UMA)

Title of the Book or reference	Publication Year	Link to the reference
Building internet of things with the Arduino. V1.1	2012	https://dl-acm- org.manchester.idm.oclc.org/doi/abs/10.5555/2500975
From machine-to- machine to the internet of things : introduction to a new age of intelligence	2014	https://www.sciencedirect.com/book/9780124076846/from- machine-to-machine-to-the-internet-of-things
Internet of things: principles	2017 (7 th edition) or 2020 (8 th edition if available)	https://www.sciencedirect.com/book/9780128053959/internet- of-things

Table 109. Recommended relevant courses to all topics and subjects of the internet of things: architectures and applications course at (UMA)

Suggested Topic	Required Sessions	Pre-requisites
Wireless communications	2 intensive	Outline of how wireless communication and

	sessions	computer networks work including the interoperability of wireless networks
Programming	1 pre-requisite course for those who need it	Introduction to fundamental concepts of computer programming

5.16 MACHINE LEARNING

This course is being offered as part of the Bachelor's degree in Computer Science at the University of Manchester (UMA). The course consists of some chapters ranging from the Basic knowledge, Essential knowledge on clustering, Practical skills, Architecture, Evaluation, Training, Self-adaption system, Supervised learning, Performance measurement and Artificial intelligence.

The UMA has enough experience in teaching of this course and can provide enough materials for this course to the consortium. UMA suggest topics of "Mathematical techniques for computer science, Data Science, Introduction to Artificial Intelligence and Foundations of Pure Mathematics" to be taught in the frame of this course to make your listed subjects in this course more complete and practical.

UMA uses courses 2 national and 3 international below links as base or would suggest them in terms of the content and quality of the course:

National

- https://www.southampton.ac.uk/courses/modules/comp3222
- https://www1.essex.ac.uk/modules/Default.aspx?coursecode=CE213&level=5&period=AT&c ampus=CA&year=20

International

- https://www.sydney.edu.au/courses/units-of-study/2021/comp/comp5318.html
- https://courses.students.ubc.ca/cs/courseschedule?pname=subjarea&tname=subjcourse&dept=CPSC&course=330
- https://www.handbook.unsw.edu.au/postgraduate/courses/2019/COMP9417/

The practical part of the course is offered in the form of teaching assistantship. Further details and breakdown of current topics in this course are given in Table 110. Table 111 shows the suggested content for the teaching assistant part of this course. Recommended textbooks are shown in Table 112. Table 113 shows subjects and/or courses that are not in this course, but can make IoT graduates more competent and competitive to the market and industry.

Week #	Theory/Practice	Macro Topics	Micro Topics	Pre-requisites	Comments
Week 1	Session 1	Basic knowledge	Machine learning basics		Independent study
	Session 2				Online lecture
	Session 1			Knowledge of mathematical	Independent study
Week 2	Session 2	Essential knowledge on clustering	k-Nearest Neighbours	notions relevant to computer science and their applications	Online lecture

Table 110. Weekly plan and details of all topics and subjects of machine learning course at (UMA)

	Session 1			How	Independent
Week 3	Session 2	Practical skills	How to perform machine learning experiments	allows the formulation and proof of properties for real-world and computational phenomena	Online lecture
	Session 1		Machine learning models	Introduction	Independent study
Week 4	Session 2	Architecture	like instance- based model, linear model, linear basis function model, kernel methods, single- and multi-layer perceptrons, etc.	of methods for exploring and visualising data and understanding the uncertainty in data	Online lecture
	Session 1		Loss functions like sum of	Fundamental mathematical	Independent study
Week 5	Session 2	Evaluation	squares error, regularisation, cross-entropy, etc.	concepts of sets, numbers, functions and proof	Online lecture
	Session 1		Optimisation approaches for		Independent study
Week 6	Session 2	Training	training like basic optimality conditions, (stochastic) gradient descent, etc.		Online lecture
Maak 7	Session 1	Self-adaption	Artificial Neural		Independent study
Week 7	Session 2	system	Networks		Online lecture
Week 8	Session 1	Supervised	Support Vector		Independent study
	Session 2	learning	Machines		Online lecture
Week 9	Session 1	Performance	Clustering		Independent study
	Session 2	measurement	analysis		Online lecture
	Session 1	A		Basic search- and planning-	Independent study
Week 10	Session 2	Artificial intelligence	Deep Learning Models	algorithms from Artificial Intelligence	Online lecture
Week 11	Session 1	Summary	Conclusions of adaptive		Independent study

D1.1

Session 2	techniques for learning from data as well as data analysis and modelling	Online lecture
-----------	--	----------------

Table 111. Suggested content for the teaching assistant part of machine learning course at (UMA)

Week #	Theory/Practice	Macro Topics	Micro Topics	Pre- requisites	Comments
Week 1	Theory	Concepts	Understand fundamental principals and essential elements		Online laboratory
Week 2	Theory	Supervised learning	Understand advantages and disadvantages, and decide which is appropriate for a particular application	Practice using python tools for data processing and analysis	Online laboratory
Week 3	Theory	Clustering algorithms	Understand basic knowledge and applications of clustering		Online laboratory
Week 4	Theory	Parametric and non-parametric	Understand differences between deterministic and probabilistic models		Online laboratory
Week 5	Theory	Data	How to use data, select and evaluate models		Online laboratory
Week 6	Theory	Analysis	Analyse general factors affecting system performance		Online laboratory

Table 112. Recommended Textbook of machine learning course at (UMA)

Title of the Book or reference	Publication Year	Link to the reference
A first course in machine learning	2016	http://www.dcs.gla.ac.uk/~srogers/firstcourseml/

Table 113. Recommended relevant courses to machine learning course at (UMA)

Suggested Topic	Required Sessions	Pre-requisites
Artificial Intelligence	1 intensive	Introduction of concepts and applications of
Ai tinciai intelligence	sessions	AI
Programming	1 pre-requisite course for those	Introduction of Python

who need it

5.17 INFORMATION PROCESSING (ELEMENTS OF STATISTICAL DATA ANALYSIS FOR ENGINEERS)

This course is being offered as part of the Bachelor's degree in Automation and Industrial Informatics at the University Politehnica of Bucharest (UPB). The course consists of some chapters ranging from the General concepts and terminology, Experimental data processing, Methods for parameter estimation, Stochastic dependency and Verification of statistical hypotheses.

The UPB has enough experience in teaching of this course and can provide enough materials for this course to the consortium. UPB suggest topics of "Python for Data Analysis and Processing, Data science" to be taught in the frame of this course to make your listed subjects in this course more complete and practical.

UPB uses courses 3 international below links as base or would suggest them in terms of the content and quality of the course:

International

- https://www.cs.utah.edu/~jeffp/teaching/cs3130.html
- https://mathstat.uoguelph.ca/node/206
- http://www.ocw.titech.ac.jp/index.php?module=General&action=T0300&JWC=201809480&l ang=EN

The practical part of the course is offered in the form of teaching assistantship. Further details and breakdown of current topics in this course are given in Table *114*. Table *115* shows the suggested content for the teaching assistant part of this course. Recommended textbooks are shown in Table 116. Table 117 shows subjects and/or courses that are not in this course, but can make IoT graduates more competent and competitive to the market and industry.

Week #	Theory/Practice	Macro Topics	Micro Topics	Pre- requisites	Comments
Week 1	- General concepts and terminology	Definitions of information processing. Information processing hierarchy.			
Week 2		General diagram for a data transmission channel. Description of the main component blocks.			
Week 3		Algorithms for statistical			
Week 4		data processing; stages of data analysis and			
Week 5		processing, definition and			
Week 6	Experimental	determination of typical			
Week 7	data processing	confidence interval, calculation of errors on experimental data (types of errors, data processing techniques for estimating			

 Table 114.Weekly plan and details of all topics and subjects of information processing (elements of statistical data analysis for engineers) at (UPB)

		errors).		
Week 8		Notions of estimation		
Week 9		theory. Types of		
		estimates. Estimation of		
	Methods for	measured quantity		
	narameter	Estimation of parameters		
Week	estimation	by the least squares		
10		method. Estimation of		
		parameters by the		
		method of maximum		
		probability.		
Week		General considerations.		
11		Basic theoretical		
	Stochastic	clarifications. Regression		
Week 9 Week 10 Week 11 Week 12 Week 13 Week 14	dependency	curves. Estimation of		
		typical regression		
Week		The notion of statistical		
13		hypothesis. The stages of		
		verifying a statistical		
		hypothesis. Types of		
	Varification of	tests; the power of a test.		
	statistical	Tests of concordance		
Week 14	hypotheses	between empirical and		
	hypotheses	theoretical distributions.		
		Tests to verify normalcy.		
		Tests to eliminate gross		
		errors from experimental		
1		data.		

Table 115. Suggested content for the teaching assistant part of information processing (elements of statistical data analysis for engineers) at (UPB)

Week #	Theory/Practice	Macro Topics	Micro Topics	Pre-requisites	Comments
Week 1	Introduction to MATLAB	Basic syntax, commands and interactive mode			
Week 2	Introduction to MATLAB	Scripts and functions			
Week 3	Methods and algorithms for dataset characterization	Statistical indicators and exploratory data analysis (EDA)			
Week 4	Methods and algorithms for the study of residual errors	Curve fitting toolbox			
Week 5	Graphical methods for statistical data	Data visualization in 2D/3D, plot			

	characterization	types and usage		
Week 6	Methods and algorithms for the study of residual errors	Linear regression		
Week 7	Evaluation	-		

Table 116. Recommended Textbook of information processing (elements of statistical data analysis for engineers) at (UPB)

Title of the Book or reference	Publication Year	Link to the reference
Applied		https://www.wiley.com/en-
Statistics and	2018	us/Applied+Statistics+apd+Probability+for+Engineerc%2C+7th+Edition-
Probability	2010	$n_0781110/00363$
for Engineers		p-9781119400303
Essential		
MATLAB for	2010	https://www.elsevier.com/books/essential-matlab-for-engineers-and-
engineers	2013	scientists/hahn/978-0-08-102997-8
and scientists		

Table 117. Recommended relevant courses to information processing (elements of statistical data analysis for engineers) at

Suggested Topic	Required Sessions	Pre-requisites
Cybersecurity for Industrial		
Control Systems		
Modern Industrial		
Communication Protocols		

5.18 INTELLIGENT MEASUREMENT SYSTEMS (WIRELESS SENSOR NETWORKS)

This course is being offered as part of the Master's degree in Automation and Industrial Informatics at the University Politehnica of Bucharest (UPB). The course consists of some chapters ranging from the General concepts and terminology, Signal propagation, Sensors and sensing systems, Fundamentals of detection and estimation, Source separation, Sensor node architecture, Sensor networks, Localization and Synchronization, Energy Management and Experimental design principles. The UPB has enough experience in teaching of this course and can provide enough materials for this course to the consortium. UPB suggest topics of "Indoor localization, distributed information processing, Embedded machine learning" to be taught in the frame of this course to make your listed subjects in this course more complete and practical.

UPB uses courses 3 international below links as base or would suggest them in terms of the content and quality of the course:

International

- https://edu.epfl.ch/coursebook/en/design-and-optimization-of-internet-of-things-systems-EE-733
- https://online.tugraz.at/tug_online/wbLv.wbShowLVDetail?pStpSpNr=217051&pSpracheNr=
 2
- https://wam.ece.ufl.edu/courses/eel5934/

The course exists the practical part in a form of the teaching assistantship. Further details and breakdown of current topics in this course are given in Table 118. Table 119 shows the suggested content for the teaching assistant part of this course. Recommended textbooks are shown in Table 120. Table *121* shows subjects and/or courses that are not in this course, but can make IoT graduates more competent and competitive to the market and industry.

Table 118. Weekly plan and details of all topics and subjects of intelligent measurement systems (wireless sensor networks) course at (UPB)

Week #	Theory/Practice	Macro Topics	Micro Topics	Pre- requisites	Comments
Week 1	General concepts and terminology	Embedded networked systems design heuristics			
Week 2	Signal propagation	Basic wave propagation phenomena; Radio signals; Optical signals; Acoustic and seismic signals			
Week 3	Sensors and sensing systems	Ideal and non-ideal operation; figures of merit; sensor classification and examples			
Week 4	Fundamentals of detection and estimation	Introduction to detection and estimation theory; Detection of signals in additive noise; Estimation of signals in additive noise; Hierarchical detection and identification systems			
Week 5	Source separation	Interference models; Source separation; Basic multiple access techniques; MAC protocols for WSN and IOT			
Week 6	Sensor node architecture	Embedded computing platform architecture; Design principles; Examples			
Week 7	Sensor networks	Network topology; Network self- organization; Routing; Latency and congestion			
Week 8	Localization and Synchronization	Principles of location; Network synchronism; Network location; Error sources in network synchronization and			

		location		
Week 9	Energy Management	Energy sources; Energy consumption of sensors, circuits, and communications; Energy optimization		
Week 10	Experimental design principles			
Week 11				
Week 12	Project Presentation			
Week 13				

 Table 119. Suggested content for the teaching assistant part of intelligent measurement systems (wireless sensor networks) course at (UPB)

Wook #	Theony/Practice	Macro Tonics	Micro	Pre-	Comments
WEEK #	Theory/Flactice		Topics	requisites	comments
Week 1		Hello World; Calculate a+b			
Week 2		; Calculate the sum of a			
WCCK Z		vector; Marking nodes;			
Week 3		Marking randomly (game			
		of light); Blinking and LEDs;			
		Blinking and LEDs; Sending			Comments
		and Receiving messages;			
		Routing messages; Sending			
		messages in broadcast;			
		Sending messages to a			
	CupCarbon	group; Reading digital			
	Hybrid IoT	sensor values; Reading			Comments
	simulato for	analog sensor values; Using			
	Digital Twin	many radio modules and			Comments Comments
Week 4	- 8.000	standards; My coordinates			
		and my neighbors; Working			
		with radio parameters;			
		Power of sending;			
		Interferences and			
		Acknowledgments			
		Send me your coordinates			
		please			
		Find the extreme left node			
		Simulate the D-LPCN			
		algorithm			
Week 5		Practical examples for			
Week 6		WSN/IOT node			
	HandsOn Labs	programming using TelosB			
Week 7		test-bed and Libellium			
		WaspMote platforms			

Table 120. Recommended Textbook of intelligent measurement systems (wireless sensor networks) course at (UPB)

Title of the Book or reference	Publication Year	Link to the reference
Principles of Embedded Networked Systems Design	2005	https://www.cambridge.org/core/books/principles-of- embedded-networked-systems- design/CD9B22F9327C7C1F1E12287C726D3C65
Fundamentals of Wireless Sensor Networks: Theory and Practice	2010	https://www.wiley.com/en- us/Fundamentals+of+Wireless+Sensor+Networks%3A+T heory+and+Practice-p-9780470975688
Embedded System Design: Embedded Systems Foundations of Cyber- Physical Systems, and the Internet of Things	2018	https://www.springer.com/de/book/9783319560434?gc lid=EAIaIQobChMIt- fU5oqd6QIViON3Ch1jMgb3EAYYASABEgJEqvD_BwE

Table 121. Recommended relevant courses to intelligent measurement systems (wireless sensor networks) course at (UPB)

Suggested Topic	Required Sessions	Pre-requisites
Cybersecurity for Industrial		
Control Systems		
Modern Industrial		
Communication Protocols		
Optimization and Operations		
Research		

6 PROPOSED COURSE LIST ACCORDING TO THE GAP IDENTIFICATION

We analysed all courses that were introduced in Table 9 and Table 10 for each relevant degree program offered in program courtiers and other countries. We then visited the courses' web pages and reviewed their modules and syllabus. If the course listed in the target degree exists in our list, we check the content to make sure they are matching or in general harmony in terms of the content, and whether our suggested course needs any update in the content. In total, we identified 322 courses as ones that need to be listed for further analysis and potential inclusion in the proposed Master of Engineering in IoT program.

Some courses listed in following table are similar to courses of the program countries, and need to be updated. From all offered courses of consortium partners, 14 ones need to be updated in terms of the content. These courses are normally those ones that are being similarly offered in our current curriculum, but have minor or major differences with the other offered courses of the IoT degree programs.

#	Course Title	Leve cour	l of ses	Academic staff expertise existence	
		BA	MA	Yes	NO
1	Advanced algorithms		\checkmark		
2	Mobile development		\checkmark		
3	Infrastructure and routing for connected objects		\checkmark		
4	Radio networks		\checkmark		
5	Positioning systems: techniques and applications		\checkmark		
6	Cloud infrastructure and virtualization		\checkmark		
7	Emulation and simulation methodologies		\checkmark		
8	Mobility Modeling		\checkmark		
9	Mobile communication systems		\checkmark		
10	Introduction to computer networking			\checkmark	
11	Distributed systems and cloud computing		\checkmark		
12	Standardization activities		\checkmark		
13	UML for Embedded Systems		\checkmark		
14	Computing and the Internet			\checkmark	
15	Operating systems		\checkmark		
17	Advanced Data Science Topics		\checkmark		
18	Mobile application and services		\checkmark		
19	Interaction design	\checkmark			
20	Communication design	\checkmark			
21	Product design	\checkmark			
22	Strategic Design		\checkmark		
23	Design principles	\checkmark			

Table 122. Courses that are not listed in report of partner countries

24	Mathematics	\checkmark		
25	Programming	\checkmark		
26	Electronics Basics	\checkmark		
27	Physics	\checkmark		
28	Representation / Simulation	\checkmark		
29	Algorithms and data structures	\checkmark		
30	Internet protocols	\checkmark		
31	Management for start-ups	\checkmark		
32	Design Thinking	\checkmark		
33	Digital Signal Processing	\checkmark		
34	Innovative Business Models	\checkmark		
35	IoT Business Impact	\checkmark		
36	Design project	\checkmark		
37	Non-technical elective	\checkmark		
38	Electronic circuits	$\mathbf{\nabla}$		
39	Information security	\mathbf{N}		
40	Service architectures and security for IoT		$\mathbf{\overline{A}}$	
43	Information and knowledge management IoT		\checkmark	
44	Intelligent applications		\checkmark	
45	IoT System designer		\checkmark	
46	IoT data analytics specialist		\checkmark	
47	Devices for IoT		\checkmark	
48	Infrastructures and communications for IoT		\checkmark	
49	Integration of systems and tools		\checkmark	
50	IoT Applications		\checkmark	
51	Smart cities		\checkmark	
52	Smart Buildings		\checkmark	
53	Network Modeling		\checkmark	
54	Fundamentals of Optimization		\checkmark	
55	Software development methodologies		\checkmark	
56	Iot Application Protocols		\checkmark	
57	Iot Communication Protocols		\checkmark	
58	An Introduction to Semantic Web technologies		\checkmark	
60	Mobile Networking		\checkmark	
61	Network Softwerization		\checkmark	
62	Security applications in networking and distributed systems		\checkmark	
63	IoT Project & Workshops		\checkmark	

64	From the Internet to the IoT: Fundamentals of Modern Computer Networking		V	
65	Business Models in the Digital Era		\checkmark	
66	Digital and Analog Electronics		\checkmark	
67	Independent IoT Project		\checkmark	
68	From Fundamentals to Reality – How the Internet Really Works, and How to Make It Better		V	
69	Corporate Finance for Entrepreneurs		\checkmark	
70	IoT Seminars		\checkmark	
71	A Programmer's Introduction to Computer Architectures and Operating			
72	Safe Intelligent Systems		\checkmark	
73	Database Management Systems		\checkmark	
74	Marketing and Strategy Introduction		\checkmark	
75	Digital Economics		\checkmark	
76	Technology-Based Entrepreneurship and New Business Creation		\checkmark	
77	Security of System		\checkmark	
78	Sensors and Transtucers: From Macro to Nano		\checkmark	
79	Calculus	\checkmark		
80	Linear Algebra	\checkmark		
81	Foreign Language	\checkmark		
82	Electrotechnics	\checkmark		
83	Operating Systems Utilization	\checkmark		
84	Programming Languages	\checkmark		
85	Computer Aided Graphics	\checkmark		
86	Mechanics and Mechanism Theory	\checkmark		
87	Physical education and sports	\checkmark		
88	Electronic devices	\checkmark		
89	Logic Design	\checkmark		
90	Web Programming	\checkmark		
91	Professional Communication	\checkmark		
92	Education Psychology	\checkmark		
93	Collaborative Work	\checkmark		
94	Pedagogy	\checkmark		
95	Special Mathematics	\checkmark		
96	Probabilities and statistics	\checkmark		
97	Object Oriented Programming	\checkmark		
98	Microeconomics	\checkmark		
99	Digital Electronics	\checkmark		

		_		
100	Database Fundamentals			
101	Macroeconomics	\checkmark		
102	Formal Languages, Automata and Compilers	\checkmark		
103	Numerical Methods	\checkmark		
104	Algorithm	\checkmark		
105	Systems and Signals Theory	\checkmark		
106	Data Acquisition and Processing	\checkmark		
107	Virtual Instrumentation	\checkmark		
108	Electronic Measurement Sensors and Transducers	\checkmark		
109	Technical Documents Advanced Processing	\checkmark		
110	Specialization Didactics	\checkmark		
111	Data Analysis and Visualization	\checkmark		
112	Image Processing	\checkmark		
113	Computer Architecture	\checkmark		
114	Intelligent Systems Engineering	\checkmark		
115	Applied Cryptography	\checkmark		
116	Computer Graphics	\checkmark		
117	Smart Grid	\checkmark		
118	Logical Programming and Functional Programming	\checkmark		
119	Digital marketing	\checkmark		
120	Domain internship	\checkmark		
121	Specialization internship	\checkmark		
122	Accounting and Financial Information	\checkmark		
123	Rights - judicial tools for engineers	\checkmark		
124	Modern Industrial Logistic	\checkmark		
125	Nanotechnology for IoT Industry	\checkmark		
126	Robotics and Multi-Agents Systems	\checkmark		
127	Computer Aided Training	\checkmark		
128	Pedagogy internship in pre-university education	\checkmark		
129	Human Computer Interaction	\checkmark		
130	Student class management	\checkmark		
131	Internet of Things	\checkmark		
132	Design with Microprocessors	\checkmark		
133	Mobile and Embedded Computing	\checkmark		
134	E-payment Systems Security	\checkmark		
135	Autonomous Systems	\checkmark		
136	Ethical Hacking and System Defence	\checkmark		

137	Virtual and Augmented Reality	\checkmark		
138	Entrepreneurship in Industry	\checkmark		
139	Mobile Communications in Industry	\checkmark		
140	Decision Support Systems	\checkmark		
141	Applications & Software Design	\checkmark		
142	Semantic Web and Open linked data	\checkmark		
143	IoT Systems Evaluation			
144	Nonlinear Control Systems	\checkmark		
145	Bioinformatics	\checkmark		
146	Key Standards in Health Information System	\checkmark		
147	Environmental impact and ecological concept of IoT products			
148	IoT Project Management			
149	Sensing and Actuation from Devices in IoT	\checkmark		
150	Cybersecurity	\checkmark		
151	Adaptive and Array Signal Processing		\checkmark	
152	Channel Coding		\checkmark	
153	Information Theory		\checkmark	
154	System Aspects in Communications		\checkmark	
155	Analog and Mixed-Signal Electronics		\checkmark	
156	Electronic Design Automation		\checkmark	
158	Nanosystems		\checkmark	
159	System-on-Chip Technologies		\checkmark	
160	Advanced Topics in Communications Systems		\checkmark	
161	Advanced Topics in Communications Electronics		\checkmark	
162	Analysis, Modeling and Simulation of Communication Networks		\checkmark	
163	Antennas and Wave Propagation		\checkmark	
164	Applied Machine Intelligence		\checkmark	
165	Aspects of Integrated System Technology and Design		\checkmark	
166	Channel Codes for Iterative Decoding		\checkmark	
167	Chip Multicore Processors		\checkmark	
168	Circuit Theory and Communications		\checkmark	
169	CMOS Analog-to-Digital Converters		\checkmark	
170	Coded Modulation		\checkmark	
171	Coding Theory for Storage and Networks		\checkmark	
172	Communication Acoustics		\checkmark	
173	Communication Network Reliability		\checkmark	
174	Computational and Analytical Methods in Electromagnetics		\checkmark	

175	Convex Optimization	\checkmark	
176	Digital Signal Processing for Optical Communication Systems	\checkmark	
177	High-Frequency Components, Amplifiers and Oscillators	\checkmark	
178	HW/SW Codesign	\checkmark	
179	Image and Video Compression	\checkmark	
180	Intelligent Machine Design - Mechatronics Fundamentals	\checkmark	
181	Introduction to Quantum Networks	\checkmark	
186	Mathematical Methods of Circuit Design	\checkmark	
187	MIMO Systems	\checkmark	
188	Mixed Integer Programming and Graph Algorithms for Engineering Problems	V	
189	Advanced Signal Processing	\checkmark	
190	Multimedia Communications	\checkmark	
191	Multi-Criteria Optimization and Decision Analysis for Embedded Systems Design	V	
192	Multi-User Information Theory	\checkmark	
193	Network Planning	\checkmark	
194	Optical Communication Systems	\checkmark	
195	Optical Networks	\checkmark	
196	Physical Principles of Electromagnetic Fields and Antenna Systems	\checkmark	
197	Physical Unclonable Functions	\checkmark	
198	Quantum Computers and Quantum Secure Communications	\checkmark	
199	Quantum Information Theory	\checkmark	
200	Radar Signals and Systems	\checkmark	
201	Satellite Navigation	\checkmark	
202	Security in Communications and Storage	\checkmark	
203	Programming for Big Data	\checkmark	
204	Statistical Signal Processing	\checkmark	
205	Synthesis of Digital Systems	\checkmark	
206	System Design for the Internet of Things	\checkmark	
207	System-on-Chip Platforms	\checkmark	
208	Techno-Economic Analysis of Telecommunication Networks	\checkmark	
209	Testing of Digital Circuits	\checkmark	
211	Topics in Optimization for Data-Driven Applications		
212	Strategic Management for Engineers (Interdisciplinary Modules)	\checkmark	
213	Digital Sustainability, Transformation of, by and for the TUM (Interdisciplinary Modules)	\checkmark	
214	Software Dependability	\checkmark	

215	Converting for LaT		
215			
216	Robot Programming		
217	Internet of Things	V	
218	Design, Development and Performance Evaluation of Next- Generation Networks	\checkmark	
219	Pervasive Computing Systems	\checkmark	
220	Algorithms, Combinatorial Optimization and Financial Applications	V	
221	IoT Technologies and Applications	\checkmark	
222	IoT Communication Technologies	\checkmark	
223	Future Internet Security and Privacy	\checkmark	
224	Robotics and Computer Vision	\checkmark	
225	Modern Networks and IoT Interfacing	\checkmark	
226	Information Transmission & Management	\checkmark	
228	Statistical Analysis for Engineers	\checkmark	
229	Secure Communication & Cryptography		
230	Electives		
231	Technology & Innovation Management	\checkmark	
232	Geodata Provisions		
233	Advanced Signal Processing	\checkmark	
234	Academic Integrity Module (online) *	\checkmark	
235	Maths for Data Science		
236	IoT Technology and Applications	\checkmark	
237	IoT Protocols and Platforms	\checkmark	
238	Entrepreneurship in IT	\checkmark	
239	IoT Communication Networks	\checkmark	
240	Professional Environment		
241	Security and Privacy in IoT	\checkmark	
242	Industry Based Learning	\checkmark	
243	Measurement and Control Systems	\checkmark	
244	Microelectronics and IC Design	\checkmark	
245	Holistic systems	\checkmark	
246	Secure Hardware and Embedded Devices	\checkmark	
247	Biologically Inspired Robotics	\checkmark	
248	Biometrics	\checkmark	
249	Open Data Innovation		
250	Digital Design and Validation using Hardware Description Languages	V	

251	Electronic Systems Design	\checkmark	
252	Fundamentals of Integrated Electronics	\checkmark	
253	Embedded Hardware Design in ASIC and FPGA	\checkmark	
254	Microsystem Technology	\checkmark	
255	Signal Theory	\checkmark	
256	Digital Communications	\checkmark	
257	Speech and Audio Processing	\checkmark	
258	Design of Fault-tolerant Systems	\checkmark	
259	Embedded Software	\checkmark	
260	Radio Electronics	\checkmark	
261	Hardware Architectures for Deep Learning	\checkmark	
262	Embedded Intelligence	\checkmark	
263	Embedded Many-Core Architectures	\checkmark	
264	Analog-Digital Interfaces	\checkmark	
265	Software Reliability	\checkmark	
266	Ethics for IT professionals	\checkmark	
267	Emerging Topics in Smart Networks	\checkmark	
268	Object-oriented Analysis and Design	\checkmark	
269	Research Design and Methods	\checkmark	
270	Differential Equations	\checkmark	
271	Individual Project	\checkmark	
272	M2M Technology Internet of Things	\checkmark	
273	Reconfigurable Hardware Design	\checkmark	
274	Wired and Wireless Communication Networks and Security	\checkmark	
275	Advanced IoT (Data Science for IoT)	\checkmark	
276	Dissertation	\checkmark	
278	Risk Assessment and Management	\checkmark	
280	Hardware Software Codesign with FPGAs	\checkmark	
281	Hardware-Oriented Security and Trust	\checkmark	
282	Introduction to Cybersecurity	\checkmark	
283	Introduction to Cloud Computing	\checkmark	
284	Satellite Communications	\checkmark	
285	Problems in Machine Learning	\checkmark	
286	Stochastic Processes	\checkmark	
287	Optimal Estimation and Filtering	\checkmark	
288	Computer Design and Prototyping	\checkmark	
289	MOS VLSI Design	\checkmark	
290	Advanced Mathematics for Engineers and Physicists	\checkmark	
-----	--	--------------	--
291	Programming Parallel Machines	 	
292	Primer on Semiconductor Fundamentals		
292	Essentials of MOSEETs		
294	Primer on Analysis of Experimental Data & Design of Experiments		
295	Applied Algorithms		
296	Computational Models and Methods	\checkmark	
297	Microfabrication Fundamentals	\checkmark	
298	Primer on RF Design		
299	Advanced Integrated Circuit Design		
300	Fundamentals of Analog Integrated Circuit Design		
301	Biochips and Medical Imaging		
302	Analog-Digital Interface Circuits		
303	Autonomous Implantable Systems		
304	Introduction to Micro and Nano Electromechanical Systems		
305	Principles of Modern Digital Communications	\checkmark	
306	Wearable and Implantable Sensors		
307	RF & Microwave Circuits	\checkmark	
308	Digital Communication System Design		
309	MIMO Wireless Communications		
310	Microelectronic Fabrication Laboratory		
311	Analog Integrated Circuits Layout		
312	Principles of Cellular Communications Networks		
313	Special Topics: From LTE to 5G and Cyber Physical Systems		
314	Power Electronics	\checkmark	
315	Commerce Technology	V	
316	Introduction to Pattern Recognition	V	
317	Professional Practice and Research Methodology	V	
318	Programming Embedded Systems	V	
319	Advanced Embedded Systems Design		
320	IP Networking and Applications		
321	Professional Practice and Research Methodology		
322	Creating and Growing a New Business Venture	\checkmark	

Table 123. Courses that are offered but need to be updated

#	Course Title	Level of courses	Academic staff expertise
---	--------------	------------------	--------------------------------

				existence	
		BA	MA	Yes	NO
1	Machine Learning		\checkmark		
2	Machine Learning for Communications		\checkmark		
3	Machine Learning: Methods and Tools		\checkmark		
4	Machine Learning and Optimization		\checkmark		
5	Embedded Systems and Security		\checkmark		
6	Embedded systems and IoT devices		\checkmark		
7	Machine Learning and Intelligent System		\checkmark		
8	Algorithmic Machine Learning		\checkmark		
9	Deep Learning		\checkmark		
10	Advanced Computer Networks		\checkmark		
11	Distributed Systems		\checkmark		
12	Advanced Computer Networks		\checkmark		
13	Advanced Machine Learning		\checkmark		
14	Advanced Networking		\checkmark		

7 RECCOMENDATIONS FOR ANALYSIS OF IDENTFILED GAPS

In this report, we recommend following designed forms to be used in the frame of this project to evaluation our proposed and identified courses and gaps.

Table 124. Proposed form to collect the feedback regarding identifed GAPS

Name of the Organization	
Name of the person answering the questionnaire	
Email address to contact for further questions	
Is this course or similar course being offered in your organization	yes/no
If yes, in which study program and which degree level? What are the exact names of the courses?	
Based on your general understanding from our provided course outline, please provide a detailed comparison (pros and cons) offered related course in your institution and the course stated here (in bullet points)	
Which degree level do you think that this course is of the most important to your students?	
What kind of companies would be interested in benefiting from the learning objectives of the course?	
Which changes/modifications would you suggest/prefer in order to match this course to the needs in Iranian industry?	
Would you like to continue teaching this course in your institute after project closure?	
If yes, which changes would you like to make in the current outline in order to better match it to your needs in the country/region? How do you want to integrate the course in your programs/degrees?	
After seeing all other courses described in this file, please give a priority to this course with the number between 1 and 10. The value 10 denotes the most important priority to the course.	

#	Course Title		Described	Level of courses	
		by	in pages	BA	MA
1	INFORMATION RETRIEVAL	IBS	22		\checkmark
2	FOUNDATIONS OF NATURAL LANGUAGE PROCESSING	IBS	25		\checkmark
3	REAL-TIME EMBEDDED SYSTEMS	IBS	27		\checkmark
4	DATA MINING	IBS	30		\checkmark
5	FOUNDATIONS OF EMBEDDED IOT SYSTEMS	IAU	33		\checkmark
6	IOT NETWORKS	IAU	34		\checkmark
7	CRYPTOGRAPHY	IAU	35		\checkmark
8	MACHINE LEARNING FOR WIRELESS COMMUNICATIONS	IAU	37		\checkmark
9	EMBEDDED PROCESSORS	IAU	37		\checkmark
10	DEEP LEARNING	IAU	38		\checkmark
11	BIG DATA	IAU	39		\checkmark
12	CLOUD AND FOG COMPUTING	IAU	41		\checkmark
13	SMART AGENTS AND SYSTEM ANALYSIS DESIGN	IAU	43		\checkmark
14	SEMANTIC WEB	IAU	43		\checkmark
15	IOT PROGRAMMING (WITH RASPBERRY PI, BLUETOOTH, MOBILE DEVICES, AND SWIFT)	IAU	44		
16	IOT SECURITY	IAU	46		\checkmark
17	CELLULAR AND WIRELESS COMMUNICATIONS	IAU	47		\checkmark
18	INTRODUCTION TO DIGITAL SIGNAL PROCESSING	IAU	47		\checkmark
19	FUNDAMENTALS OF WIRELESS NETWORKS	SCU	49	\checkmark	
20	REAL-TIME AND EMBEDDED SYSTEMS	SCU	51	\checkmark	
21	DATA COMMUNICATIONS	SCU	53	\checkmark	
22	ADVANCED COMPUTER NETWORKS	SCU	55		\checkmark
23	NETWORK SECURITY	SCU	58	\checkmark	
24	FAULT TOLERANT SYSTEMS	SCU	60		\checkmark
25	DISTRIBUTED SYSTEMS	SCU	64		\checkmark
26	ADVANCED ARTIFICIAL INTELLIGENCE	USB	66		\checkmark
27	ADVANCED COMPUTER NETWORKS	USB	68		\checkmark
28	COMPUTER NETWORKS	USU	69		\checkmark
29	NETWORKS AND COMMUNICATIONS	UWA	69		\checkmark
30	EMBEDDED CONTROL (EC)	USI	72		\checkmark
31	ELECTRICAL AND ELECTRONIC ENGINEERING I (EEEI)	USI	73		\checkmark
32	AUTOMATION AND INDUSTRIAL COMMUNICATION (AIC)	USI	75		V

Table 125. (Offered Cou	ses index o	f involved	partners ir	project
		000		pareneron	. p. cjec.

33	FUNDAMENTALS FOR MECHATRONIC APPLICATIONS (FMA)	USI	76		\checkmark
34	INTRODUCTION TO PROGRAMMING (IP)	USI	78		\checkmark
35	SENSORICS (SEN)	USI	79		\checkmark
36	ACTORICS (ACT)	USI	80		\checkmark
37	SOFTWARE ENGINEERING (SWE)	USI	81		\checkmark
38	MECHATRONIC SYSTEMS (MESY)	USI	82		\checkmark
39	DEVELOPMENT OF THE EMBEDDED SYSTEMS WITH FPGAS	USI	83		\checkmark
40	DEEP LEARNING	USI	84		\checkmark
41	DISTRIBUTED SYSTEMS	USI	86		\checkmark
42	EMBEDDED SYSTEMS	USI	87		\checkmark
43	RECENT ADVANCES IN MACHINE LEARNING	USI	89		\checkmark
44	THE INTERNET OF THINGS: ARCHITECTURES AND APPLICATIONS	UMA	89	\checkmark	
45	MACHINE LEARNING	UMA	93	\checkmark	
46	INFORMATION PROCESSING (ELEMENTS OF STATISTICAL DATA ANALYSIS FOR ENGINEERS)	UPB	96	V	
47	INTELLIGENT MEASUREMENT SYSTEMS (WIRELESS SENSOR NETWORKS)	UPB	98		\checkmark

Table 126. Offered Common Course index of involved partners in project

#	Course Title Offered by Described in pages		Described in pages	ibed ges		Academic staff expertise existence	
				BA	MA	Yes	NO
1	DEEP LEARNING	IAU and USI	38, 84		\checkmark		
2	DISTRIBUTED SYSTEMS	SCU and USI	64, 86		\checkmark		
3	ADVANCED COMPUTER NETWORK	SCU and USB	55, 68		V		
4	REAL-TIME AND EMBEDDED SYSTEMS	ISB and SCU	27, 51		V		
5	DISTRIBUTED SYSTEMS	SCU and USI	64, 86		\checkmark		